Experimental report

Proposal:	3-14-4	19	Council: 4/2021			
Title:	On the search of mirror neutron oscillations at low magnetic field with a beam experiment					
Research area: Physics						
This proposal is a continuation of 3-14-403						
Main proposer	•	William SAENZ				
Experimental team:		Stephanie ROCCIA				
		William SAENZ				
		Thomas LEFORT				
		Gilles BAN				
		Benoit CLEMENT				
		Mathieu GUIGUE				
		Dominique REBREYE	END			
		Pierre LARUE				
Local contacts:	:	Tobias JENKE				
		Stephanie ROCCIA				
Samples:						
Instrument			Requested days	Allocated days	From	То
PF2 TES			2	2	08/06/2021	12/06/2021
PF2 EDM			12	12	27/05/2021	08/06/2021

Abstract:

This proposal is an extension of the project described in proposal No. 3-14-403. During the first campaign, neutron fluxes were measured as a function of the applied magnetic B-field. Oscillations towards the mirror world would be recognized by a sudden drop of the counting rate for a given magnetic field magnitude. The data analysis of the UCN counting rates, which were of the order of $3 \times 10 5$ counts/s, revealed non-counting-statistical fluctuations present in all scans whatever the applied B-field. We aim at characterizing the nature of these fluctuations since they reduce the sensitivity on the derived limit of the oscillation time tau_nn' by a factor between 2 and 3. Therefore, we plan to record the UCN flux under different configurations at the EDM beam port: as a function of the distance from the turbine exit, with two different counters, and without B-field.

Report: On the search of mirror neutron oscillations at low magnetic field with a beam experiment

J. Chen¹, P.-J. Chiu², B. Clément³, M. Guigue⁴, T. Jenke⁵, T. Lefort¹, G. Pignol³, D. Rebreyend³, S. Roccia^{3,5}, W. Saenz¹, and P. Schmidt-Wellenburg²

²Paul Scherrer Institute, Villigen

³Laboratoire de Physique Subatomique et de Cosmologie, Grenoble ⁴Laboratoire de physique nucléaire et des hautes énergies, Paris ⁵Institut Laue-Langevin, Grenoble

The first and second experimental campaigns on mirror neutron oscillations (n - n') were dully completed (for a brief description of the experimental setup, see [1]). After a thorough analysis of the collected data, these experiments allowed reporting new limits on the parameter space $(\delta m/\mu_n, \tau_{nn'})$, where δm represents the neutron - mirror neutron mass splitting, μ_n the neutron magnetic moment and $\tau_{nn'}$ the characteristic time of oscillations.

Initially, the data revealed non-statistical fluctuations affecting the UCN counting rate. However, after comparing these fluctuations against the reactor power variations, it was found a non-negligible correlation at the scale of seconds. Such systematic effect was accounted for by scaling the UCN counting error bars by the factor

$$(s/\sigma_{\text{Pois}})_{R_{ABC}} = 2.23\tag{1}$$

where s and σ_{Pois} are the standard deviation and Poissonian width of the distribution of normalized UCN fluxes R_{ABC} . Several other sources of systematics were studied. The dependence of the UCN detector efficiency to magnetic fields, the presence of background counts with non-constant rates and periodic fluctuations of the UCN counting, up to a few Hz, were all estimated smaller than the statistical fluctuations.

The search for a signal was carried out by comparing the normalized UCN flux at the different magnetic fields with the n - n' model predictions. In this process, the dynamics of n - n' oscillations was computed numerically via the Liouville-Neumann equation

$$\partial_t \hat{\rho} = -i[\hat{\mathcal{H}}_{nn'}, \hat{\rho}] = -i\hat{\mathcal{H}}_{nn'}\hat{\rho} + i\hat{\rho}\hat{\mathcal{H}}_{nn'}^{\dagger}, \qquad (2)$$

where $\hat{\rho}$ is the 2 × 2 density matrix in the basis ($\psi_n, \psi_{n'}$) representing the quantum state composed of neutrons and mirror neutrons, and

$$\hat{\mathcal{H}}_{nn'} = \begin{pmatrix} \mu_n B & 1/\tau_{nn'} \\ 1/\tau_{nn'} & \delta m \end{pmatrix}.$$
(3)

Since no significant signal was found, the new limit on the n - n' model parameters was set as [3]

$$\tau_{nn'} > 1 \,\mathrm{s} \,\mathrm{for} \,|\delta m| \in [2 - 69] \times 10^{-12} \,\mathrm{eV} \,(95\% \,\mathrm{C.L.})$$

Using the same data set, the bound was also computed within the mirror magnetic field approach [2], which resulted

$$\tau_{nn'} > 1 \,\mathrm{s} \,\mathrm{for} \,B' \in [50 - 1130] \,\mu\mathrm{T} \,(95\% \,\mathrm{C.L.}).$$

References

- [1] G. Ban, et al. (2022). Conf. proc.: Moriond 2022 EW. 10.58027/9qzt-x624.
- [2] Berezhiani, Z. (2009). The European Physical Journal C, 64(3).
- [3] G. Ban, et al. (2023). To be published. arXiv:2303.10507.