Experimental report

Proposal:	4-01-1512			Council: 4/2016		
Title:	Investigation of a frustrated quantum magnet with novel interaction scheme					
Research area: Physics						
This proposal is a new proposal						
Main proposer:	Shravani CHILLAL					
Experimental to	eam: Shravani CHILLAL					
	Bella LAKE					
Local contacts:	Paul STEFFENS					
Samples: SrCuTe2O6						
Instrument		Requested days	Allocated days	From	То	
THALES		7	6	24/06/2016	30/06/2016	
Abstract:						

SrCuTe2O6 consists of a 3-dimensional arrangement of spin-1/2 Cu ions. The 1st, 2nd and 3rd neighbor interactions respectively couple Cu2+ into a network of isolated triangles, a highly frustrated hyperkagome lattice consisting of corner sharing triangles and antiferromagnetic chains. Of these, the chain interaction dominates in SrCuTe2O6 while the other two interactions lead to frustrated interchain coupling giving rise to long range magnetic order, however, at suppressed temperatures. This is in contrast to ideal spin-1/2 antiferromagnetic chain which is expected to have a spin liquid ground state with no long-range magnetic order and spinon excitations. Frustrated interchain coupling leads to weak long-range order and modifies the low energy excitation spectrum in a way that reflects the underlying physics arising from the frustration. Therefore, we wish to explore the magnetic excitations of this quantum magnet using inelastic neutron scattering on the THALES spectrometer together with the multiplexed analyzer/detector and the single detector systems. Hence, we request a beamtime of 7 days.

Investigation of a frustrated quantum magnet with novel interaction scheme

SrCuTe₂O₆ is a new quantum magnet crystallizing in cubic symmetry (space group P4₁32 [1]) with the magnetic spin-1/2 Cu²⁺ ions occupying a single Wyckoff site. The Cu²⁺ ions are coupled together by exchange interactions J₁, J₂ and J₃ which in turn, couple them into isolated equilateral triangles, a highly frustrated hyperkagome lattice (network or corner sharing triangles) and uniform chains (running parallel to the **a**, **b**, and **c** axes) respectively. Together, these interactions can give rise to a frustrated network of chains. The DC susceptibility measurements of SrCuTe₂O₆ reveal a broad maximum at 32K, which is reminiscent of a one-dimensional spin-1/2 Heisenberg antiferromagnet. The susceptibility can be fitted to a 1D chain model for chain interaction J₃= 49K (4.22meV) [2]. Further, the First principles electronic structure calculations also confirm the 1D nature of the magnetism in the system and find that J₃ is 45K. These calculations also suggest that J₁, J₂ are also significant enough leading to frustrated interchain coupling. This is further confirmed experimentally by the appearance of two successive magnetic transitions at T_{N1}=5.5K and T_{N2}=4.5K in DC susceptibility and heat capacity data [2,3,4].

Ideally, a spin-1/2 AF chain is expected to have a spin liquid ground state with no long range order (LRO) and only spinon continuum instead of the sharp magnon modes. The spinon continuum forms a sinusoidal modulation of the excitation spectra originating at the 1D zone centre with an upper

bound of $\pi^* J_{chain}$ and a lower bound of $\pi/2^* J_{chain}$. The addition of a frustrated interchain coupling chains could give rise to LRO and modify the excitation spectra such that ordered spins affect the low energies while 1D chains still dominate the higher energies. In case of SrCuTe₂O₆, we expect the upper and lower bounds of the spinon continuum to be at approximately 14mev and 7mev respectively originating at (1,0,0). A sharp spin wave dispersion is expected at lower energies due to the small frustrated interchain coupling at the 3D AF zone centre. In this experiment we explore both parts of the magnetic excitations in SrCuTe₂O₆ using inelastic neutron scattering. For this purpose we make use of two co-aligned single crystals of SrCuTe₂O₆ (see Figure 1) oriented in the <hh0>/<00l> scattering plane so that the high symmetric cubic directions <001>, <110> and <111> are accessible for the measurement. To obtain an overview of the magnetic excitation spectra at various energy transfers ranging from 0.5meV - 8meV at 2K and 8K (which correspond to the temperatures above and below the magnetic transitions), we make use of the multi analyser/detector system.

Figure 1 Picture of the single crystal alignment used for the THALES

In first part of the experiment, the excitation spectra is obtained at higher energy which reveal the one dimensional nature of the interactions in the system, in the form of streaks perpendicular (along <hh0>) to the chain direction *c* (<00l>). This feature is visible both above (8K) and below (2K) the magnetic transition temperature as can be seen in Figures 2a-b for energy transfer of 6meV. The excitations above T_N are broader compared to the 2K because of the thermal broadening. As the system has three mutually perpendicular chains running parallel to crystalline *a*, *b* and *c* directions, we also observe streaks parallel to <001> direction. These streaks are stronger in intensity than the other direction because it is a superposition of two other chains running along *a* and *b* directions.

The effect of magnetic ordering is visible at lower energies. This is clearly evident in Figure 2c-d. At high temperatures, the plot still shows the signatures of the 1D behaviour, i.e., streaks running along <00l> and <hh0> directions, as expected. However, at 2K, the streaks are replaced by sharp blobs of intensity that come as a result of a steep spinwave dispersion of the long range ordered state. This behaviour is very similar to the prototypical 1D chain compound KCuF₃, where the antiferromagnetically coupled 1D chains are interacting by a weak ferromagnetic coupling [5]. Therefore, we can conclude that the frustrated J1 and J2 couplings in SrCuTe₂O₆ provide the necessary interchain interactions that consequently force the one dimensional system into a three dimensional magnetic order at lower temperatures.

Figure 2: The constant energy maps of SrCuTe₂O₆ at energy transfers of 6 meV and 0.5 meV at 2K (below T_N) and 8K (above T_N).

References:

- [1] L. Wulff, and H. Muller-Buschbaum, Zeitschrift fur Naturforschung 52 1341 (1997)
- [2] N. Ahmed et.al., Phys. Rev B **91** 214413 (2015)
- [3] B. Koteswararao et.al., J.Phys.:Condens. Matter 27 426001 (2015)
- [4] B. Koteswararao et.al., APL Mater. 4, 036101 (2016)
- [5] B. Lake et.al., Nature materials 4, 329 (2005)