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Abstract:

We propose to test the theoretical prediction that the c-axis spin susceptibility in a  tetragonal metal depends on the relative orientation

between an applied magnetic field in the a-b plane and a wave vector also in the a-b plane. The effect arises due to peculiarities of the

spin-orbit  coupling  in  a  two-band  metal,  and  can  be  measured  using  field-projected  polarization  analysis  on  a  cold  triple  axis

spectrometer  equipped  with  a  horizontal  magnet.



The spin-orbit interaction may give rise to unexpected “symmetry-breaking” effects
in metals. This is in particular true for metals without inversion symmetry [1–3], where
the spin-orbit coupling becomes antisymmetric of so-called Rashba type, γ(k) = −γ(−k)
[4]. This splits the Fermi surface and removes the spin degeneracy of the electronic
states. A surprising theoretical prediction was that in a noncentrosymmetric tetragonal
metal, the spin susceptibility χaa(q) would be different from χbb(q) for a wave vector q

along the crystallographic a axis [5]. In other words, a finite wave vector q “breaks”
the tetragonal symmetry of the crystal. This effect was recently demonstrated in the
noncentrosymmetric heavy-fermion superconductor CePt3Si by polarized inelastic neutron
scattering on a single crystal [6].

However, even centrosymmetric metals may show unusual effects due to the spin-orbit
coupling. It was recently predicted that the ordinary spin-orbit coupling in a two-band
model also “breaks” the tetragonal symmetry in the presence of a magnetic field in the
basal planeHab [7,8]. Specifically, it was shown that for a wave vector qab in the tetragonal
base plane, the spin susceptibility along the tetragonal axis, χcc(qab), would depend on
the relative direction of Hab and qab, i.e. χcc(qab ‖Hab) 6= χcc(qab⊥Hab). The derivation
in [7,8] was made for a system with inversion symmetry, but the extra term arising in the
free energy for noncentrosymmetric systems does not change the final expression for the
magnetic susceptibility using the same assumptions [9].

To test this prediction, we have chosen the noncentrosymmetric tetragonal heavy-
fermion superconductor CePt3Si [10,11], for which large single crystals can be grown.
The crystal-field ground state doublet is well separated from the first excited doublet, as
shown by a combination of polarization-dependent soft x-ray absorption spectroscopy and
polarized inelastic neutron scattering on single crystals [12]. The exchange interactions are
dominantly antiferromagnetic as shown by the Curie-Weiss temperature, θCW = −45 K
[10,11]. Long-range antiferromagnetic order is observed below TN ≈ 2.2 K with a propa-
gation vector k = (0, 0,1/2) [10,13–15], and mixed singlet-triplet superconductivity below
Tc ≈ 0.7 K. The magnetic excitations have been extensively studied by inelastic neutron
scattering on single crystals in all three phases: in the superconducting antiferromagnet-
ically ordered phase, in the normal conducting antiferromagnetically ordered phase, and
in the paramagnetic phase up to temperatures of 10 TN [14]. The large value of the linear
term in the specific heat, γ = 390 mJK−2mole−1, shows that heavy quasiparticles are
formed due to the hybridization of the near-local 4f 1-band electrons with the conduction
electrons, resulting in a Kondo temperature of TK ≈ 10 K. This hybridization implies that
there are two bands in CePt3Si, a requisite for the observation of the predicted effect.

Using polarized neutrons and polarization analysis on IN12, we measured the spin
susceptibility along the tetragonal axis of a large 6-g single crystal of CePt3Si with a mag-
netic field H applied in the tetragonal basal plane, using the HM3 horizontal cryomagnet.
The measurements were performed in the non-superconducting “paramagnetic” phase at
T = 5 K. The spin flipper in the incident beam was sufficiently far from the magnet that
measurements could be performed up to H = 4.5 T. The spin flipper mounted in the
scattered beam was too close to the magnet and stopped working already at H = 0.5 T.
Fortunately, only one flipper was required for the measurements. The quite restrictive
geometry of the HM3 magnet with its four 45◦-wide accessible sectors lead to that a final
wave vector of kf = 2.25 Å−1 was used. Unfortunately, no difference between the mag-
netic response for the wave vector q parallel or perpendicular to the field H was observed,
see figure 1. One reason may be that the signal is too weak in the used geometry, as
the magnetic susceptibility is probed at ql = 0, whereas the magnetic correlations are
antiferromagnetic and hence largest for half-integer ql.
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Fig. 1: Wave-vector anisotropy of the dynamic magnetic c-axis susceptibility of CePt3Si at

T = 5 K for different magnetic fields H and wave vectors q.
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