Experimental report

Proposal:	4-02-467			Council: 4/20	16
Title:	Superconducting gap in the one-dimensional bands in Sr2RuO4				
Research area	: Physics				
This proposal is	a continuation of 4-02-4	45			
Main propose	r: Stefan KUNK	EMOELLER			
Experimental	team: Stefan KUNKE	EMOELLER			
Local contacts	S: Paul STEFFEN	S			
Samples: Sr2	RuO4				
Instrument		Requested days	Allocated days	From	То
THALES		5	5	22/09/2016	27/09/2016

There is ongoing debate about the symmetry of the superconducting order parameter in Sr2RuO4 which is one of the most promising materials for topological superconductivity. In our previous experiment we observe that the nesting induced fluctuations clearly persist in the superconducting state for energies significantly below 2delta, which strongly suggests that the 1d bands are not the active bands in the superconducting pairing. We want to continue with our studies in order to obtain clear information about the nature and size of the superconducting gap on the 1d bands.

Published in:

S. Kunkemöller, P. Steffens, P. Link, Y. Sidis, Z. Q. Mao, Y. Maeno, and M. Braden

Phys. Rev. Lett. 118, 147002 - Published 5 April 2017

Absence of a Large Superconductivity-Induced Gap in Magnetic Fluctuations of Sr2RuO4

Inelastic neutron scattering experiments on Sr2RuO4 determine the spectral weight of the nesting induced magnetic fluctuations across the superconducting transition. There is no observable change at the superconducting transition down to an energy of ~ 0.35 meV, which is well below the 2 Δ values reported in several tunneling experiments. At this and higher energies magnetic fluctuations clearly persist in the superconducting state. Only at energies below ~ 0.3 meV can evidence for partial suppression of spectral weight in the superconducting state be observed. This strongly suggests that the one-dimensional bands with the associated nesting fluctuations do not form the active, highly gapped bands in the superconducting pairing in Sr2RuO4.