## **Experimental report**

| Proposal:                       | 4-02-531                                                                                         |        |                 | Cou         | <b>Council:</b> 4/2018 |            |  |
|---------------------------------|--------------------------------------------------------------------------------------------------|--------|-----------------|-------------|------------------------|------------|--|
| Title:                          | Polarized neutron scattering studyof the nematic spin correlations in uniaxial strained BaFe2As2 |        |                 |             |                        |            |  |
| Research area: Physics          |                                                                                                  |        |                 |             |                        |            |  |
| This proposal is a new proposal |                                                                                                  |        |                 |             |                        |            |  |
| Main proposer                   | : Xingye L                                                                                       | U      |                 |             |                        |            |  |
| Experimental t                  | team: Long TIA                                                                                   | N      |                 |             |                        |            |  |
|                                 | Panpan L                                                                                         | IU     |                 |             |                        |            |  |
|                                 | Xingye L                                                                                         | U      |                 |             |                        |            |  |
|                                 | Jitae PAR                                                                                        | K      |                 |             |                        |            |  |
| Local contacts:                 | Karin SC                                                                                         | HMALZL |                 |             |                        |            |  |
| Samples: BaFe                   | 2As2                                                                                             |        |                 |             |                        |            |  |
| Instrument                      |                                                                                                  | Reques | ted days Alloca | ed days Fro | om '                   | То         |  |
| IN22 CPA                        |                                                                                                  | 8      | 8               | 02/1        | 10/2018                | 10/10/2018 |  |
|                                 |                                                                                                  |        |                 |             |                        |            |  |

## Abstract:

The electronic nematic in iron pnictides has been discovered in many properties and thought to be crucial for understanding the origin of the intertwined orders in iron pnictides. It has also been discovered in spin excitation. Our previous experiment has observed clear spin excitation difference between Q1 = (1, 0) and Q2 = (0, 1) in the tetragonal state of uniaxial strained BaFe2-xNixAs2 (termed nematic spin correlations). This nematic spin correlation has been proposed to be essential for sorting out the origin of the electronic nematic. One effective way to obtain a complete understanding of the nematic spin correlations is to study its structure in spin space, that is, the spin fluctuations along a, b and c axes (Ma, Mb, Mc) of uniaxial strained sample and its temperature dependence across TN. Moreover, nuclear magnetic resonance measurements on strained sample suggested that the spin nematic along c axis diverges at TN while its inplane counterparts not, indicating a strong coupling between strain and c axis spin polarization. To sort out the nature of the nematic spin correlations and the coupling, we propose to study strained BaFe2As2 by polarized neutron scattering.

## Polarized neutron scattering study of the nematic spin correlations in uniaxial strained BaFe<sub>2</sub>As<sub>2</sub>

Panpan Liu<sup>1</sup>, Long Tian<sup>1</sup>, Xingye Lu<sup>1</sup>, Pengcheng Dai<sup>1,2</sup>

<sup>1</sup> Department of physics, Beijing normal university, Beijing 100875, China

<sup>2</sup> Department of Physics and Astronomy, Rice University, Houston, Texas 77005, USA

The origin of the in-plane electronic nematic is one of the most important unresolved problems in the quest for the mechanism of high- $T_c$  superconductivity in iron pnictides [1]. The electronic nematic was firstly discovered in the resistivity measurements of underdoped Ba(Fe<sub>1-x</sub>Co<sub>x</sub>)<sub>2</sub>As<sub>2</sub> [2], which undergoes structural and magnetic transitions ( $T_s>T_N$ ) and forms twinning domains in the orthorhombic antiferromagnetic state [2]. Resistivity measurements on uniaxial-stress detwinned Ba(Fe<sub>1-x</sub>Co<sub>x</sub>)<sub>2</sub>As<sub>2</sub> revealed strong in-plane resistivity anisotropy ( $\rho_a < \rho_b$ ) persisting to a temperature ( $T^*$ ) well above  $T_s$ . This non-trivial nematic in the uniaxial-strained paramagnetic tetragonal state was proposed to be crucial for understanding the origin of the intertwined orders in iron pnictides, and has received intensive studies by various techniques [1-4]. This nematic has also been discovered in spin excitations [4].

The nematic spin correlation is intimately correlated with the resistivity anisotropy [2] and proposed to be crucial for sorting out the origin of the electronic nematic [1]. One effective way to obtain a complete understanding of the nematic spin correlations is to study its structure in spin space, that is, the spin fluctuations along a, b and c axes ( $M_a$ ,  $M_b$ ,  $M_c$ ) of uniaxial strained sample,  $M_a$  is the longitudinal mode,  $M_b$  is transverse mode along b axis and  $M_c$  transverse mode along c axis (out of plane).

In this experiment, we have measured the fully detwinned (Fig.1) BaFe<sub>2</sub>As<sub>2</sub> sample which  $T_N \approx 143$ K and obtained the Ma, Mb, Mc components. Fig.2 shows the constant-Q scan at two AF wave vectors  $Q_1=(1\ 0\ 1)$  and  $Q_2=(1\ 0\ 3)$  at T=135K((a)-(c)) and 180K((d)-(f)). Fig.2(c) shows our calculated  $M_a$ ,  $M_b$ ,  $M_c$  ( $M_c > M_b > M_a$ ), it is similar to spin excitations of BaFe<sub>2</sub>As<sub>2</sub> [5]. Fig.2(f) confirms the isotropic paramagnetic of the scattering. Fig.3 shows the constant-Q scan at (H 0 L) and (0 K L) scattering plane at T=135K. Fig.3(c) revealing  $M_a > M_c > M_b$ , it indicates that  $M_b$  increases above  $T_N$ . It is different from the case in twinned BaFe<sub>2</sub>As<sub>2</sub> sample where  $M_a > M_c \approx M_b$  [6].

Figure.4 summarizes the main results of our experiment. In a twinned BaFe<sub>2</sub>As<sub>2</sub> sample, Fig.4 (e) shows that the longitudinal mode ( $M_a$ ) at E=2 meV diverges at  $T_N$  while the transverse modes evolve smoothly across  $T_N$  [6]. In a detwinned BaFe<sub>2</sub>As<sub>2</sub> sample Fig.4 (f) shows that not only the longitudinal mode  $M_a$  diverges, but the transverse mode  $M_c$  also shows a clear diverging tendency, while  $M_b$  changes less compared with that in twinned sample. This result is very clear in the raw data [Figs. 4(a)-4(d)].

## **Reference:**

[1] R. M. Fernandes et al., Nat. Phys. 10, 97 (2014).

- [2] J. Chu et al., Science 329, 824 (2010).
- [3] Ming Yi et al., PNAS 108, 6878 (2011).
- [4] Xingye Lu et al., Science 345, 657 (2014).

[5] C.Wang et al., Phys. Rev. X 3, 041036 (2013).

[6] Yu Li et al., Phys. Rev. B 96, 020404(R) (2017).

