Experimental report

Proposal:	4-05-623		Council: 4/2015					
Title:	Magne	Magnetic excitations in electron-mass-enhanced semiconductors Ce3Co4Sn13 and Ce3Rh4Sn13						
Research area: Physics								
This proposal is a new proposal								
Main proposer:		Kazuaki IWASA						
Experimental team:		Kazuya SUYAMA						
		Kazuaki IWASA						
Local contacts:		Paul STEFFENS						
Samples: Ce3Rh4Sn13 Ce3Co4Sn13								
Instrument			Requested days	Allocated days	From	То		
THALES			10	5	18/11/2015	23/11/2015		
Abstract: We propose inela	stic cold	-neutron scattering exp	eriments to investig	gate spin fluctuatio	ons of Ce3Co4Sn1	3 and Ce3Rh4Sn13, wh	ich show	

we propose inelastic cold-neutron scattering experiments to investigate spin fluctuations of Ce3Co4Sn13 and Ce3Rn4Sn13, which show heavy-fermion (HF) states at low temperatures subsequent to charge-density-wave formations at 160 and 352 K, respectively. The semiconducting behaviors are enhanced below approximately 20 K, while the effective electron masses are pointed out to become large due to electronic correlation. The experiments are aimed at investigating characteristics of spin dynamics relevant to the HF state unexpectedly coexisting with the gapped electronic state. This study must reveal a new dual nature between localized and itinerant electrons in the correlated f-electron systems.

Experimental report of 4-05-623 on ThALES (November 17-23, 2015) "Magnetic excitations in electron-mass-enhanced semiconductors Ce₃Co₄Sn₁₃ and Ce₃Rh₄Sn₁₃"

K. Iwasa, K. Suyama (Tohoku University) S. Raymond (CEA-Grenoble), and P. Steffens (ILL)

Scientific background

Electronic properties of materials crystallizing into the Yb₃Rh₄Sn₁₃-type cubic structure, which is shown in Fig. 1, are extensively studied. $(Ca_xSr_{1-x})_3Ir_4Sn_{13}$ exhibits superconductivity, whose transition temperature increases with decreasing *x* corresponding to the approach to the critical point of structural instability (L. E. Klintberg et al., PRL **109**, 237008 (2012)). Superconductivity was also discovered in $R_3T_4Sn_{13}$ (R = La, Sr; T = Rh, Ir) (N. Kase et al.: PRB **83**, 184509 (2011)). Ce₃Pt₄In₁₃ is a heavy-fermion (HF) antiferromagnet (AFM) (M. F. Hundley et al., PRB **65**, 024401 (2001)). Thus, the 3-4-13 series is a candidate of strongly correlated electron systems due to hybridized *R*-ion *f* electrons with conduction electrons originated from Sn and transition metal atoms. Ce₃Co₄Sn₁₃ has been reported to form a charge density wave (CDW) at 160 K (C. S. Lue et al., PRB **85**, 205120 (2012)), and the similar phenomena are also suggested for Ce₃Rh₄Sn₁₃ (A. Ślebarski et al., PRB **86**, 155122 (2012)). Our group succeeded in synthesizing single-crystalline samples using the Sn self-flux method. We observed structural transitions at 160 and 352 K in Ce₃Co₄Sn₁₃ and Ce₃Rh₄Sn₁₃, respectively, using an x-ray diffraction technique (Y. Otomo, K. Suyama, and K. Iwasa, under preparation).

Aim of proposal

Below the CDW transition temperatures of Ce₃Co₄Sn₁₃ and Ce₃Rh₄Sn₁₃, the electrical resistivity values of both compounds are larger than those of the La-based reference materials (no 4f electrons). The temperature dependence of electrical resistivity exhibits a steep upturn below approximately 15 K. At much lower temperature, the Sommerfeld coefficient, $\gamma = C/T$, reach approximately 4 J/(mol-Ce K²) (A. L. Cornelius et al., Physica B 378-380, 113 (2006), A. Ślebarski et al., PRB 86, 205113 (2012), E. L. Thomas et al., J. Solid State Chem. 179, 1642 (2006)). This fact indicates that these materials are candidate HF systems with a huge effective electron mass. Ce3Co4Sn13 does not exhibit any magnetic ordering down to 0.5 K, and Ce₃Rh₄Sn₁₃ is suggested to undergo an antiferromagnetic (AFM) ordering below 2 K (Y. Oduchi et al., J. Magn. Magn. Mater. 310, 249 (2007)). It is interesting to reveal the role of Ce-ion 4f electrons in the coexistence of the HF state with the semiconductor or semimetallic state. A similar electronic state was found in CeOs₄Sb₁₂, which shows $\gamma = 0.2$ J/(mol-Ce K²) and a semiconducting behavior (H. Sugawara et al., PRB 71, 125127 (2005)). The photoemission spec-

Figure 1: $Yb_3Rh_4Sn_{13}$ -type cubic structure. Yellow circles on the surfaces of the cubic unit cell are rare-earth ions. Dark blue circles are transition-metal atoms, and others are Sn atoms.

troscopy study on this compound suggests that the symmetry dependent hybridization between f and conduction electrons, which can account for the electronic dual nature based on the anomalous coexistence of the HF state and the low-energy band gap state (M. Matsunami et al., PRL **102**, 036403 (2009)). However, the spin of CeOs₄Sb₁₂ is too tiny to be detected by neutron scattering, and the characteristic spin fluctuation remains unsettled (K. Iwasa et al., ILL Experimental Report 4-01-710). Therefore, the aim of this experiment is to reveal characteristic spin fluctuation in the HF state of Ce₃T₄Sn₁₃ (T = Co, Rh).

Experimental procedures

Single crystalline samples of Ce₃Rh₄Sn₁₃ were synthesized at Tohoku University by using the molten Sn-flux method as described in the literatures mentioned above. We measured inelastic neutron scattering (INS) from this sample at ThALES. We used FlatCone with $k_f = 1.4$ Å⁻¹, in order to search wave-vector dependent INS signal. The normal triple-axis mode with the fixed $k_f = 1.3$ and 1.5 Å⁻¹ was also applied, in order to reveal energy spectral shape at selected scattering vectors. The co-aligned single crystals were installed in a liquid-helium cryostat, and sample

temperature was controlled between 1.6 and 40 K. The study on the $Ce_3Co_4Sn_{13}$ was also carried out by using 4F2 at Laboratories Léon Brillouin.

Experimental results and discussions

Figure 2 shows energy spectra at the scattering vector $\mathbf{Q} =$ (0.75, 0.75, 0.75) at measurement temperatures of 1.6 and 40 K. We found temperature dependence in the scattering intensity between 0.1 and 0.5 meV in energy transfer. The neutronenergy-gain side (negative energy region) shows an increase in intensity with decreasing temperature, and vice versa in the neutron-energy-loss side (positive energy region). This behavior indicates that a Lorentzian-like quasielastic spectrum centered at zero-energy transfer is enhanced with decreasing temperature, as expected from the Bose distribution factor. In addition, a shoulder-like inelastic peak is seen at approximately 0.35 meV, which is also enhanced at 1.6 K. These signals are expected to indicate characteristics of the spin fluctuation relevant to the electronic correlation in the low-temperature range. The present result of the energy spectrum is consistent with previously reported result for the polycrystalline sample (D. T. Adroja et al., Physica B 403, 898 (2008)).

We also attempted measurements of wave-vector dependence of the low-temperature signal. Figure 3 shows scans along the principal crystallographic axes, [q, 0, 0], [q, q, q], and [0, q, q], with the fixed energy transfer of 0.25 meV. Blue open circles, red, ope squares, and black closed diamonds are raw data of the scans at 1.6, 20, and 40 K, respectively. The difference between the intensity at 1.6 and 20 K are shown by blue closed circles, and that between 20 and 40 K by red squares. It is noteworthy that the all of the scan data along the three directions show increases in intensity at 1.6 K, in contrast to no clear change between 20 and 40 K. Within the present statistical certainty, we cannot conclude any dependence of the scattering-intensity enhancement on the wave vector.

Summary

According to magnetic susceptibility data at hightemperature range of Ce₃Rh₄Sn₁₃, the Ce ion takes a trivalent ionic state with $4f^1$ configuration. Thus, the ground state of the Ce-ion crystalline field splitting is a Kramers doublet. Adroja and co-workers reported that the excited states are located at 9 and 38 meV, so that the spin fluctuation is associated with the lowest-energy doublet. It should be noted that the structural distortion on the CDW transition gives rise to the two independent atomic sites. This fact means that there are at least two inequivalent 4f-electrons state. We speculate that each of the state correspond to the two components of the present inelastic neutron scattering: the quasielastic response and the inelastic 0.3-meV peak. Each of them is caused by the Kondo effect and the well localized 4f states with clear level splitting. Such dy

Figure 2: Inelastic neutron scattering spectra of Ce₃Rh₄Sn₁₃ at 1.6 and 40 K. The measurement scattering vector is fixed at $\mathbf{Q} = (0.75, 0.75, 0.75)$, and the $k_{\rm f} = 1.3 \text{ Å}^{-1}$ fixed mode was used.

Figure 3: Scans along the principal crystallographic axises, [q, 0, 0], [q, q, q], and [0, q, q], with the fixed energy transfer of 0.25 meV of Ce₃Rh₄Sn₁₃. Top panels are data taken at measurement temperatures of 1.6, 20 and 40 K, and a bottom panels are differences of intensity obtained by subtracting the data at 40 K from the lower-temperature data

the well-localized 4f states with clear level splitting. Such duality in the spin dynamics is a key to understand the coexistence of the HF electron state and the high electrical resistivity in Ce₃Rh₄Sn₁₃.

We carried out the same inelastic neutron scattering for $Ce_3Co_4Sn_{13}$ by using the triple-axis neutron spectrometer 4F2 at Laboratories Léon Brillouin, in order to compare spin dynamics between these isomorphic compounds. $Ce_3Co_4Sn_{13}$ shows also enhancement of magnetic excitation in the energy range lower than 0.5 meV below approximately 15 K. We obtained characteristic spin dynamics that are relevant to the low-temperature electronic properties of both compounds. However, in contrast to $Ce_3Rh_4Sn_{13}$, $Ce_3Co_4Sn_{13}$ shows a wave-vector-dependent inelastic scattering intensity. Thus, much lower-temperature inelastic neutron scattering experiment is thought to be necessary to investigate whether the spatial correlation in spin dynamics of $Ce_3Rh_4Sn_{13}$ emerges or not.

Acknowledgments

The present study at ILL for $Ce_3Rh_4Sn_{13}$ was performed under the collaboration with Dr. J.-M. Mignot (LLB, CEA-CNRS, CEA-Saclay) for the study on $Ce_3Co_4Sn_{13}$. Sample preparation and measurements of basic properties were supported by Ms. Y. Otomo, Dr. K. Tomiyasu, and Mr. M. Onodera (Tohoku University). Travel expenses for the present experiment were supported by General User Program for Neutron Scattering Experiments, Institute for Solid State Physics, The University of Tokyo (proposal no. 15528), at JRR-3, Japan Atomic Energy Agency, Tokai, Japan.