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Abstract:

This proposal is a part of an investigation of U(1) spin liquid states, quadrupole ordering, and their quantum phase transition in a

frustrated pyrochlore magnet Tb_{2+x}Ti_{2-x}O_{7+y}. In spin ices, finite zero-point entropy and magnetic monopole excitations

have attracted much attention. Spin ices are well represented by a classical Ising Hamiltonian. When spin-flip terms are added to this

spin-ice Hamiltonian, very interesting quantum many-body effects emerge from the macroscopically degenerate ground state. This is

referred to as "quantum spin ice", in which the phase angles of the spinors become correlated in such a way that a U(1) gauge field

emerges. In the U(1) spin liquid state, the U(1) field is fluctuating down to T = 0, where gapped spinon and gapless photon excitations

are predicted. By changing interaction parameters, the system undergoes a phase transition to a LRO states. A simple pseudo-spin

ordering is the putative quadrupole ordering of Tb_{2+x}Ti_{2-x}O_{7+y}. The purpose of this proposal is to get convincing evidence

for this quadrupole ordering using inelastic neutron scattering.



Geometrically frustrated magnets have been actively studied in recent years [1]. In particu-
lar, pyrochlore magnets [2] showing spin ice behavior [3] have interesting features such as finite
zero-point entropy and emergent magnetic monopole excitations [4]. A quantum spin-liquid
state (QSL) is theoretically predicted for certain spin-ice like systems [5–8], where transverse
spin interactions drive the classical spin ice into a QSL. This quantum spin ice (QSI), or U(1)
quantum spin liquid, is characterized by an emergent U(1) gauge field and by excitations in
form of gapped bosonic spinons and gapless photons [5–8]. By modifying the interactions in
some way, the system undergoes a quantum phase transition to a long range ordered (LRO)
state of transverse spin or pseudospin, in analogy to a Higgs transition [6,7].

Among magnetic pyrochlore oxides [2], Tb2Ti2O7 (TTO) has attracted much attention,
because magnetic moments remain dynamic with short range correlations down to 50 mK
[9]. Since TTO has been thought to be located close to the classical spin ice, although clear
experimental evidence is still missing, the dynamical low-T behavior of TTO could be ascribed
to QSI [10]. Inspired by this intriguing idea, numerous experimental studies of TTO have been
performed [11–13]. However, the interpretation of experimental data remains very difficult
[8,14], yet interesting, partly owing to strong sample dependence [11]. Among these studies,
our investigation of polycrystalline Tb2+xTi2−xO7+y showed that a very small change of x
induces a quantum phase transition between a dynamical ground state (x < xc = −0.0025) and
a LRO state with a hidden order parameter (x > xc) [12]. It is important to clarify the origin
of this order parameter, which becomes dynamical in the spin liquid state (x < xc). Based on
theoretical considerations of the crystal-field (CF) states of non-Kramers magnetic ions in the
pyrochlore structure together with their superexchange interaction [7,15], a possible answer to
the problem of Tb2+xTi2−xO7+y is an electric multipole (or quadrupole) ordering and a U(1)
QSL state [16–18].

The experimental difficulty of TTO comes from controlling the quality of large crystalline
samples for neutron scattering [18]. By using a small crystal with x ' 0.005, which ex-
hibits a well-defined Tc of 0.53 K, we performed specific heat and magnetization experiments
[16]. We analyzed these data together with the magnetic excitation spectra of a polycrys-
talline sample with x = 0.005, and showed that the phase transition at Tc is ascribable
to an electric quadrupole LRO [16,17]. Very recently, we showed that a single-crystalline
rod of Tb2+xTi2−xO7+y grown by the standard FZ technique has a composition (x) gradi-
ent, which gives rise to the inhomogeneity problem [18]. By selecting low x-gradient parts of
single-crystalline rods, we have made two multi-crystal samples, one in the QSL phase with
x ' −0.007, and one in the hidden order phase with 0 < x < 0.005, i.e. x > xc. The initial
idea of the proposal on IN5 was to measure the hidden-order phase, but due to experimental
circumstances, the QSL crystal was used for the measurements.

The crystal assembly had a good mosaicity and was readily aligned on IN5. However, due
to the poor thermal conductivity inherent to the multi-crystal sample mount, the cooling of
the sample was very slow, taking about 1.5 days between T = 2 to 0.1 K. Measurements were
performed at two temperatures, T = 0.1 and 0.7 K, at a wavelength of λ = 8 Å, making standard
rocking scans with a step of 1◦. A complementary measurement was performed at λ = 4.8 Å
to allow comparison with previous measurements. The main results of the measurements is the
existence of short-range spin fluctuations around Q = (1/2, 1/2, 1/2), which are characteristic
for the QSL state. The temperature dependence of these spin fluctuations shows that the QSL
state is developed gradually below 0.4 K (Fig. 1). Detailed analyses to reveal the mechanism
of the QSL state are underway.
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