Experimental report

Proposal:	4-05-7	11			Council: 4/202	8
Title:	Multi-	ti-particle excitations in a coupled spin-1 antiferromagnetic chain material.				
Research are	a: Physic	S				
This proposal is	s a resubn	nission of 4-05-667				
Main proposer:		Rafal WAWRZYNCZAK				
Experimental team:		Michel KENZELMANN				
		Rafal WAWRZYNCZA	ΛK			
Local contac	ts:	Mechthild ENDERLE				
Samples: R	oNiCl3					
Instrument			Requested days	Allocated days	From	То
			14	7	28/06/2018	05/07/2018

The S= 1 antiferromagnetic chain, also called Haldane chain, in the absence of inter-chain interactions exhibits a gapped spin-liquid ground-state, with characteristic S= 1 triplet excitations. In RbNiCl3 chains of Ni2+ (S=1) ions form a triangular array and coupling between those leads to the onset of long range magnetic order at TN= 12 K. In preliminary studies, apart from well defined, expected gapped excitations we have observed a broad continuum of multi-particle scattering. This continuum is more pronounced than the one predicted for processes involving multiple Haldane triplets. However, there is a strong resemblance of this feature with the one expected for the presence of S= 1/2, paired quasi particles (spinons). We suspect that the inter-chain frustration, due to their triangular arrangement, causes surprising appearance of those fractionalized excitations. Therefore we propose to investigate the extent of measured continuum at wave-vectors covering the inter-chain interactions and its temperature dependence.

Multi-particle excitations in a coupled spin-1 antiferromagnetic chain material.

R. Wawrzyńczak,¹ M. Kenzelmann,² M. Enderle,¹ and K. Krämer³

¹Institut Laue Langevin, FR-38042 Grenoble, France

²Laboratory for Neutron Scattering, PSI, CH-5232 Villigen PSI, Switzerland

³Departement für Chemie und Biochemie, Universität Bern, Freiestrasse 3, CH-3000 Berne 9, Switzerland

IN20 tirple-axis neutron spectrometer with longitudinal polarization setup was employed for investigation of scattering continuum of multi-particle excitations in RbNiCl₃ spin-1 antiferromagnetic Heisenberg chain. Excess scattering weight intensity, in form of broad feature, was observed above the well-defined branches of magnetic excitations at the anit-ferromagnetic point ($Q_l = 1$) of intrachain dispersion. This coincides with the region where multi-particle continuum scatterin was observed in closely related CsNiCl₃. The observed continuum constitutes 5(3)% of the inelastic magnetic scattering at $\mathbf{Q} = (1/3, 1/3, 1)$.

A single-crystal sample in form of rod with length $l \sim 45 \text{ mm}$ and diameter $\phi \sim 5 \text{ mm}$ was aligned with [hhl]-crystallographic plane lying in the horizontal scattering plane (Fig. 1). It was enclosed in Al can filled with helium gas serving as a protective atmosphere, due to the sample's hygroscopic character.

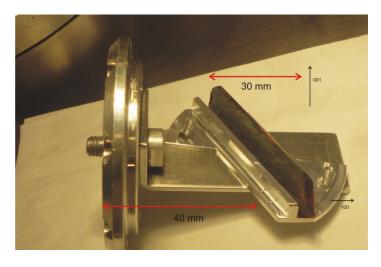


FIG. 1. Single crystal sample of RbNicL_3 on an aluminium sample mount.

Sample was cooled down to T = 2 K, well beyond the Néel temperature $T_N \sim 11$ K, and constant-Q scans at three positions ((2/3, 2/3, 1/2), (1/3, 1/3, 1) and (2/3, 2/3, 0)) were performed. x, y and z spin flip scattering channels were mea-

sured to allow for separation of magnetic scattering $|M_{\perp}|^2$.

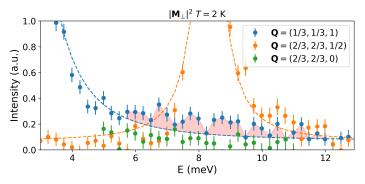


FIG. 2. Separated magnetic scattering intensities in constant-Q scans. The dashed lines are fits to the peaks of magnetic excitations with antisymmetrized Loretzian wighted with Bose factor. The shaded are marks the excess scattering weight.

Peaks of well-defined magnetic excitations were fitted with antisymmetrized Lorentzian weighted with Bose factor. Scatteirng intensity measured in scan at $\mathbf{Q} = (2/3, 2/3, 0)$ does not seem to be affected by any magnetic scattering. The averaged intensity of this scan was used as a flat background in the fitting procedure.

Excess magnetic scattering wieght was observed above the well-defined magnetic excitation branches in the energy range E = 5 - 12 meV at magnetic zone center Q = (1/3, 1/3, 1) (Fig. 2). The observed feature takes form of broad continuum similar to the one observed in CsNiCl₃ (Keznelmann et. al. PRL **87** 017201). It constitutes the 5(3)% of inelastic magnetic scattering weight at Q = (1/3, 1/3, 1), which is much smaller than 9(2)% observed in CsNiCl₃ at Q = (0.81, 0.81, 1).