Experimental report

Proposal:	4-06-1	1		Council: 10/2019			
Title:	Study	udy of a Novel Series of Isostructural Heterometallic 3d-4f Single Molecule Magnets with INS					
Research area: Physics							
This proposal is a new proposal							
Main proposer		Julius MUTSCHLER					
Experimental team:		Thomas RUPPERT					
		Oliver WALDMANN					
		Julius MUTSCHLER					
Local contacts:		Jacques OLLIVIER					
Samples: [AIIII2ErIII2(µ3-OH)2(pmide)2(p-Me-PhCO2)6]·2MeCN							
[FeIII2ErIII2(µ3-OH)2(pmide)2(p-Me-PhCO2)6]·2MeCN							
Instrument			Requested days	Allocated days	From	То	
IN6-SHARP			6	3	14/09/2020	17/09/2020	
IN5			3	0			
Abstract: A major goal in tailoring single molecule magnets (SMMs) is to raise their blocking temperature, below which magnetic hysteresis on							
the molecular scale is observed, to technologically relevant temperatures. A crucial factor in the game is the magnetic anisotropy, and							

molecules containing both 3d and 4f metal ions are attractive candidates in this context. Understanding the magnetic anisotropy due to the Lanthanide ions in such systems is however challenging. In a recent breakthrough, a new family of isostructual M2Ln2 butterfly compounds were synthesized, which for the first time allows us to replace the 3d Fe ions by diamagnetic Al ions in isostructural 3d-4f-SMMs, and therefore unprecedented means to study the Lanthanide's anisotropy in such SMMs. Here we propose to measure the Er-containing members of this new family on the instrument IN5 or IN6.

4-06-11 Study of a Novel Series of Isostructural Heterometallic 3d-4f Single Molecule Magnets with INS

Motivation:

The aim of this study is to complete the INS-dataset of a novel series of single-moleculemagnets (SMMs) to understand the interplay of magnetic anisotropy and exchange coupling between magnetic metal ions in SMMs, and their impact on their magnetic properties. This series of heterometallic SMMs includes both transition metal and rare earth ions. The rare earth ions have typically a very low symmetry ligand structure and therefore requires complicated magnetic models with many parameters (e.g. Stevens parameters) [4]. In the studied SMMs the rare earth Er^{III} ions can be chemically exchanged by nonmagnetic Y^{III} ions, which allowed us to directly measure the magnetism of the transition metal ions without the effects due to magnetic rare earth ions. In addition, and for the first time, the studied series of SMMs also permitted to chemically replace the transition metal ions, which thus allowed us to also directly measure the magnetism of the rare earth ions in the relevant low symmetry ligand field environment [1,2].

Our first experiment on this unique series of heterometallic SMMs provides us with insights into the role of the 4f electrons of Dy^{III} ions for the magnetism [5]. With completing the dataset of this series of SMMs it is possible to investigate the difference of the effect of the Dy^{III} ions and the Er^{III} ions on the magnetism in this SMMs. Due to the fact that in [5] the studied SMM Fe₂Y₂ unfortunately turned out to be poly-phase, this compound is studied again.

Experiment:

In the experiments we recorded INS data on non-deuterated powder samples of the three isostructural compounds Fe_2Y_2 , Fe_2Er_2 and Al_2Er_2 [3] $[M^{III}_2Ln^{III}_2(\mu_3-OH)_2(pmide)_2(p-Me-PhCO_2)_6] \cdot 2MeC$, where Ln^{III} was either Y^{III} or Er^{III} and M^{III} was either Fe^{III} or Al^{III} , respectively (the samples were provided by the group of Prof. Annie K. Powell, University Karlsruhe, Germany). The sample weight of Fe_2Y_2 was 0.85g, of Fe_2Er_2 0.74g and of Al_2Er_2 1.06g. From the three compounds it is possible to distinguish the effects of the Ln^{III} - Ln^{III} interactions, the interactions of the Ln^{III} ions with the M^{III} ions, and the effect of the M^{III} - M^{III} interactions. Different neutron wavelengths and several temperatures were chosen to explore the excitations in these compounds.

For Fe₂Er₂ data was recorded at 4.1 Å (1.5 K, 5 K, 15 K and 30 K), 5.1 Å (1.5 K, 8 K, 15 K, 30 K and 50 K) (the 4.1 Å data are shown in Figure 1) and quite many magnetic transitions in the energy range between 1.3 and 2.6 meV were observed.

The Al_2Er_2 compound was measured at 5.1 Å (1.5 K and 30 K). The data at low temperatures provides a nearly perfect background for the Fe_2Er_2 measurement. Hints for an $Er^{III}-Er^{III}$ interaction were not observed (Figure 2Figure 2).

For Fe_2Y_2 data was taken at 4.1 Å (1.5 K, 50 K and 70 K).

The recorded data are of excellent quality and provide us a detailed view on the magnetic excitations in these compounds. IN6 was very suitable for the study and performed excellently. Within the allocated time, which was a bit too short, it was not possible to measure the Al_2Er_2 at 4.1 Å which would give us a better insight on the background, e.g. on the energies around 3.5 to 4 meV. This could be due to the remote access (due to lockdown and Covid19). This beamtime permitted us to record the important data. We also wish to emphasize the excellent support by the local contact.

Detailed analyses and quantum simulations to reveal the energy scheme of the Fe_2Er_2 and the Fe_2Y_2 compounds are underway.

Figure 1: Fe_2Er_2 : S(q,w)-plot for 4.1 Å at 1.5 K (left) and temperature dependence of peaks (right)

Figure 2: Data of Fe₂Er₂ and Al₂Er₂ at 5.1 Å at temperatures 1.5 K and 30 K

References:

[1] Y. Peng, V. Mereacre, C. E. Anson, A. K. Powell, ACS Omega 2018, **3**, 6360-6368 (2018)

[2] Y. Peng, V. Meracre, C.E. Anson, A.K. Powell, Phys. Chem. Chem. Phys., **18** 21469 (2016)

[3] A. Furrer, O. Waldmann, Rev. Mod. Phys. 85, 367 (2013)

[4] K. Prša, J. Nehrkorn, J.F. Corbey, W.J. Evans, S. Demir, J.R. Long, T. Guidi,

O. Waldmann, Magnetochemistry, 2, 45 (2016)

[5] J.Mutschler, O.Waldmann, ILL - IN5 - Proposal 4-04-9 (2019)