Experimental report

Proposal: 5-21-1		163 Council: 10/2020									
Title: Variable		e Temperature Powder Neutron Diffraction study of Mg3Sb2 and Mg3Bi2;Defect Structure at Room									
Research area: Chemistry											
This proposal is a new proposal											
Main proposer:		Duncan GREGORY									
Experimental team:		Vivian NASSIF									
Local contacts:		Vivian NASSIF									
Samples:	Mg3Bi2 Mg3Sb2										
Instrument			Requested days	Allocated days	From	То					
D1B			2	1	11/10/2021	12/10/2021					
Abstract:											

Mg3Sb2 and Mg3Bi2 based Zintls have attracted great research interest recently as both high-performance thermoelectrics and as rechargeable magnesium-ion battery anodes. At low temperatures, their alpha-phases crystallise with the trigonal CaAl2Si2-type structure composed of Mg2+ cation layers intercalated between tightly bound [Mg2X2]2- (X=Sb,Bi) anionic layers. Deficiencies of the Mg2+ layers were often reported, potentially influencing on Mg2+ transport and sample properties. At ca. 900 and 730 °C, respectively, Mg3Sb2 and Mg3Bi2 are proposed to transform to a high-T beta-phase, with liquid-like Mg2+ within the interstices of a body-centered cubic (bcc) sub-lattice of X3- anions, which exhibit fast Mg2+ conductivity. To date, no complete structural models exist from the limited studies performed. Herein, Mg3Sb2 and Mg3Bi2 powders are synthesised in an Mg-rich environment through rapid and energy-efficient solid-state microwave approaches within minutes. We propose to conduct variable-T PND studies exploiting the superior intensity and resolution of D1B at ILL, investigating the evolution of structure, stoichiometry and defect chemistry through the alphabeta transition.

Variable Temperature Powder Neutron Diffraction (PND) study of Mg₃Sb₂ and Mg₃Bi₂; Defect Structure at Room Temperature and in the Superionic Beta-Phase.

Zhen Fan,^a Vivian Nassif,^b and Duncan H. Gregory*^a

a. WestCHEM, School of Chemistry, Joseph Black Building, University of Glasgow, Glasgow, G12 8QQ, United Kingdom.

b. Institut Laue-Langevin, 71, av des Martyrs, CS 20156 – 38042 GRENOBLE CEDEX 9, France.

* Principal Investigator. E-mail: Duncan.Gregory@glasgow.ac.uk. Tel: +44-141-330-8128.

1. Introduction

Isostructural Mg₃Sb₂ and Mg₃Bi₂, crystalizing in the trigonal CaAl₂Si₂-type layered structure (Space group *P-3ml*) as noted in our original proposal,¹ were initially studied by *Zintl* and Husemann in the 1930s.² Significantly, extrinsically doped n-type Mg₃Sb₂-Mg₃Bi₂ alloys have rapidly attracted interest in the last six years, becoming some of the most promising thermoelectric materials in the low-mid temperature range (*ca.* 300-700 K), equaling or surpassing the only commercial choice - Bi₂Te₃ over the past few decades.³ Moreover, Mg₃Sb₂ and Mg₃Bi₂ have been recently proposed as potential advanced anode materials for rechargeable magnesium-ion batteries.⁴ However, despite their importance, the defect crystal structures of the materials remain largely unelucidated.

The "metal to non-metal" transition of Mg₃Bi₂ has been experimentally studied since the 1990s and liquid Mg₃Bi₂ melts show low electrical conductivity but unusually high ionic mobility.⁵ Intriguingly, solid Mg₃Bi₂ and Mg₃Sb₂ also undergo temperature-induced phase transitions from the room-temperature (RT) alpha phases to the high-T superionic beta phases at *ca*. 730 and 900 °C, respectively. Crystallized Bi/Sb sub-lattices superimposed on liquid-like Mg²⁺ cations were proposed.⁶ Barnes *et al.* analyzed the phase transition of Mg₃Bi₂ *via in-situ* PND in 1994 and proposed a *bcc* Bi sub-lattice with a lattice parameter of 5.297(4) Å, with the same *Im-3m* structure as alpha-Ag₂Se.⁷ Quasi-elastic neutron scattering experiments by Howells *et al.* in 1999 confirmed the mobile Mg²⁺ in beta-phase Mg₃Bi₂ suggesting short-distance jumping and long-distance continuous diffusion.⁸ Li *et al.* quenched Mg₃Sb₂ and Mg₃Bi₂ samples into liquid nitrogen from > 1203 and 976 K, respectively; PXD revealed only trigonal α-phases with no trace of *bcc* β-phases, indicating a fast phase transition.⁹ To the best of our knowledge, there is no direct experimental evidence of the α/β-phase transition of Mg₃Sb₂. The preferred sites and potential pathways of the liquid-like Mg cations remain to be revealed. The experiments in ILL proposal 5-21-1163 were performed on 11th OCT 2021.¹

2. Experimental

Variable-T PND experiments were performed using the D1B diffractometer over $0.77 - 128.67^{\circ}$ (20).¹ Samples were loaded to a height of *ca* 7 mm into stainless steel sample cans under Ar, which were then sealed. Data collections began at RT (293.15 K) to allow Rietveld refinement of the structure of the alpha phases. Diffraction data at intermediate temperatures were collected thereafter at 623.15 and 723.15 K. PND datasets of the β -phases were collected at 1023.15 & 1223.15 K for Mg₃Bi₂ and Mg₃Sb₂, respectively. During heating, datasets were collected every 3 min to capture reversible phase transitions.

The stainless steel sample holder inevitably contributed intense peaks to the PND patterns (refined in space group *Fm-3m*). Refinements were performed through combined Le Bail and Rietveld methods, employing GSAS via the EXPGUI interface.^{10,11} Profile fitting of the stainless steel sample holder was performed by the Le-Bail method, while other relevant phases of the sample were refined through the Rietveld method. A CIF file created from the refined β -Mg₃Sb₂ structure was used for BVS calculations (*SoftBV* software) by setting Mg²⁺ as the mobile cation and Sb³⁻ as the fixed anion.¹² Refined structures and calculated iso-surfaces were plotted through the VESTA package.¹³

Figure 1. *In-situ* PND patterns of Mg₃Bi₂ on heating (**a**) and cooling (**b**), respectively; and Mg₃Sb₂ on heating (**c**) and cooling (**d**), respectively. The temperature, collection time and ramp rate are indicated.

3. Results and Discussion

3.1 Temperature-dependent phase transitions

Figures 1a, b show PND patterns of Mg₃Bi₂ on heating and cooling, respectively. α-Mg₃Bi₂ remained stable from 293.15-961.15 K, shifted reflections indicated lattice expansion with temperature. At 1023.15 K (750 °C), the highly symmetric diffraction peaks confirmed the stable presence of the high-T β-phase Mg₃Bi₂ with a diffuse background. The transition to β -Mg₃Bi₂ was observed between 961.15 – 1020.15 K, agreeing well Barnes *et al.*'s study.⁷ Figure 1b confirms the reversible β - α transitions upon cooling and no extra impurity phases were formed during the entire experiment. Figures 1c&d show PND patterns of Mg₃Sb₂ during heating and cooling, respectively. α-Mg₃Sb₂ remained stable from 293.15-1098.15 K. At 1223.15 K, a highly symmetric and simple diffraction pattern with a diffuse background was observed, indicating superionic β -Mg₃Sb₂. Its corresponding PND pattern closely resembles that of β -Mg₃Bi₂ (Figure 1a), suggesting an isostructural relationship, although Mg3Sb2 undergoes the phase transition at a temperature ca. 200 K higher. The results also suggested an intermediate phase between the α - and β -forms between 1156.15-1215.15 K (Figures 1c,d).High-guality data enabled systematic investigation of the T-dependent structural changes. Combined Rietveld and Le Bail methods were employed for the structure refinements. Tables 1, 2 summarize unit cell lattice parameters and occupancies of Mg(1) and Mg(2) sites for alpha-phase Mg₃Sb₂ and Mg₃Bi₂ at different temperatures. Figure 2a illustrates the corresponding crystal structure of Mg₃Sb₂ at RT. Table 1 indicates a defective Mg₃Sb₂ structure with Mg(1) vacancies at RT, equivalent to a stoichiometry of Mg_{2.87(3)}Sb₂; at the intermediate temperature, Mg(1) vacancies were effectively eliminated with a refined stoichiometry of Mg2.94(5)Sb2, which was potentially caused by extra Mg located at the grain surfaces during synthesis. Table 2 suggests Mg vacancies for Mg₃Bi₂, but the vacancies were signaled at the Mg(2) sites. The thermal expansion along the *c*-axis was slightly higher than in the *ab*-plane for both Mg₃Sb₂ and Mg₃Bi₂.

3.2 Refined crystal structures and potential Mg²⁺ cation pathways in beta phases

Figure 2b illustrates the typical crystal structure of the *bcc* sub-lattice, as refined against the PND datasets. Figure 2c shows the profile plots of combined Rietveld and Le Bail refinement against PND datasets of β -Mg₃Sb₂ and Mg₃Bi₂. The refinement results confirmed the *bcc Im-3m* structure of Bi and Sb (at the *2a* sites (0, 0, 0)) sub-lattices, leading to *a* = 5.3320(24) and 5.2565(15) Å, respectively. The former is a good match with Barnes *et al.*'s PND study in 1994.⁷ Interestingly, by drawing Sb-Sb bonds and projecting the beta-phase Sb sub-lattices along the [*111*] direction, we found that the beta phase resembles closely the Sb₈-packed layered frameworks. This may indicate the minor rearrangement of the distorted Sb₈ frameworks from the α-phase into uniform Sb₈ frameworks through the phase transition. We used an equivalent triclinic unit cell for β-phase Sb sub-lattices with presumed Mg positions (based on the α-structure, *i.e.* forming Mg₃Sb₂) and performed the BVS calculations, setting Mg²⁺ as the mobile cation. It should be noted that a model of Bi³⁻ is not yet available in the SoftBV software package; a 3- state for Bi would not be physically meaningful.

Collection temperature and time of the	293.15 K	721.15 K	<i>ca.</i> 1068.15 – 1098.15 K
PND dataset	180 min	180 min	3 min
Lattice parameter a / Å	4.5691(5)	4.6082(10)	4.6575(17)
Lattice parameter c/ Å	7.2426(16)	7.3233(33)	7.4315(57)
Cell volume / Å ³	130.942(30)	134.678(60)	139.609(112)
SOF Mg(1)	0.87(3)	0.94(5)	1.0 ^b
SOF Mg(2)	1.0 ª	1.0 ª	1.0 ^b
а/а 293.15 К	1.0	1.008555	1.019351
С/С 293.15 К	1.0	1.011154	1.026092

Table 1. Lattice parameters and Mg site occupancy factors (SOF) at different temperatures.

 Table 2. Lattice parameters and Mg site occupancy factors (SOF) at different temperatures.

1 0	1, 3, ((),		
Collection temperature and time of the	293.15 K	623.15 K	<i>ca.</i> 901.15 – 961.15 K
PND dataset	90 min	60 min	3 min
Lattice parameter a / Å	4.6594(5)	4.6926(6)	4.7294(32)
Lattice parameter c / Å	7.4040(17)	7.4633(17)	7.5336(82)
Cell volume / Å ³	139.207(31)	142.327(33)	145.931(249)
SOF Mg(1)	1.0 ^a	1.0 ª	1.0 ^b
SOF Mg(2)	0.914(46)	0.965(35)	1.0 ^b
а/а _{293.15 К}	1.0	1.007117	1.012021
с/с _{293.15 К}	1.0	1.008120	1.017501

a. Refinement led to a value higher than unity, thus this value was fixed at 1.0.

b. Refinement was not attempted due to the short PND collection duration of 3 min.

Figure 2d shows BVS-calculated potentials for Mg^{2+} diffusion within Sb sub-lattices. A total of 12 locations with a minimum potential of 0.0 eV for Mg^{2+} were identified in a single unit cell. Only an activation energy of < 0.284 eV is required for Mg^{2+} cations to diffuse through saddle points from the neighboring minimum-potential sites, with a diffusion distance of 2.63 Å. Figure 2e shows the corresponding unit-cell structure with favoured Mg^{2+} pathways in this superionic phase. The 3D pathways are isotropic and a large fraction of vacant Mg sites exist in the triclinic Sb sub-lattices, considering the stoichiometry of Mg_3Sb_2 .

Figure 2. (a) Crystal structure of α -Mg₃Sb₂; (b) typical *bcc* crystal structure of β -Mg₃Sb₂; (c) profile plots for β -Mg₃Sb₂ and Mg₃Bi₂; (d) BVS-calculated potentials for Mg²⁺ diffusion within the crystal structure in (e); and (e) the corresponding structural plots and iso-surfaces for the Mg²⁺ potentials. A cubic unit cell is highlighted by orange lines in (b). Yellow circles in (b) illustrate the potential accommodation of Mg atoms based on (a). In (e), black iso-surfaces indicate minimum Mg²⁺ potential locations (0 eV); cyan iso-surfaces are at + 0.2 eV and yellow iso-surfaces are + 0.24 eV. Bond distances in Å.

4. Conclusions

In summary, the *in-situ* variable-T PND experiments have enabled the detailed scrutiny of defect structures in isostructural α -Mg₃Sb₂ and Mg₃Bi₂ from RT to intermediate Ts. The reversible alpha-beta phase transitions of Mg₃Sb₂ and Mg₃Bi₂ were elucidated successfully; both superionic β -phases were confirmed with *bcc Im-3m* structured Sb/Bi sub-lattices. The BVS calculations identified the favored Mg sites and diffusion pathways for Mg cations in the equivalent triclinic sub-lattices, suggesting short-distance jumps and long-distance continuous diffusion. An intermediate phase (with a pattern resembling β -Mg₃Sb₂ with some extra diffraction peaks) was suggested near the alpha-beta phase transition at *ca*. 1156.15 – 1215.15 K. The outcomes of this experiment contribute to a fundamental understanding of the structure-dynamics relationships in Mg₃Sb₂ and Mg₃Bi₂ solids.

References

- 1. Fan Z., et al. Institut Laue-Langevin (ILL) doi:10.5291/ILL-DATA.5-21-1163.
- 2. Zintl E., et al. Physical Chemistry 21B 138-155 (1933).
- 3. Mao J., et al. Science 365, 495-498 (2019).
- 4. Tan Y.H., et al. ACS Nano 12(6), 5856-5865 (2018).
- 5. Guo C., et al. Journal of Physics: Condensed Matter 8, 10823 (1996).
- 6. Zhang J., et al. npj Computational Materials 5, 1-17 (2019).
- 7. Barnes A.C., et al. Journal of Physics: Condensed Matter 6(32) L467 (1994).
- 8. Howells W.S., et al. Physica B: Condensed Matter 266 97-99 (1999).
- 9. Li A., et al. Research 1934848 (2020).
- 10. Toby B.H. Journal of applied crystallography 34 210-213 (2001).
- 11. Le Bail A. Powder Diffraction 20 316-326 (2005).
- 12. Wong L.L. et al. Chemistry of Materials 33 625-641 (2021).
- 13. Momma K., et al. Journal of applied crystallography 44 1272-1276 (2011).