Proposal:	5-23-649	Council:	4/2012	
Title:	Oxygen defects and crystal structure of the n = 3 Ruddlesden Popper system LaSr3(Co,Fe,Ga)3O10-d			
This proposal is a new proposal				
Researh Area:	Materials			
Main proposer:	PRADO Fernando			
Experimental Team: PRADO Fernando				
Local Contact:	CUELLO Gabriel Julio)		
Samples:	LaSr3Fe1.5Co1.5O10 LaSr3Fe2GaO10 LaSr3Fe2.4Ga0.6O10 LaSr3Ga0.6Fe1.8Co0.6O10 LaSr3Ga0.3Fe1.35Co1.35O9.2 LaSr3Ga0.3Fe1.35Co1.35O10 LaSr3Ga0.6Fe1.8Co0.6O10 LaSr3Fe2.4Ga0.6O9.4 LaSrFe3O10			
Instrument	Req. Days	All. Days	From	То
D2B	2	2	09/11/2012	11/11/2012
Abstract: The crystal chemistry of the n = 3 Ruddlesden-Popper oxides LaSr3(Co,Fe,Ga)O10-delta will be studied. On one hand we are interested to determine the oxygen defect structure of the LaSr3Co1.5Fe1.5O10-delta phase in the temperature range 20 < T < 900 °C in air. We expect to determine with accuracy both the position and the occupation number for the four oxygen atoms at high temperature to explain the mechanism for oxygen diffusion at high temperature. On the other hand, we propose to study the structural transformation from tetragonal (I4/mmm)to orthorhombic (Fmmm)symmetry observed in the LaSr3(Co,Fe,Ga)O10-delta R-P phases when either Fe and Co are replaced by Ga or oxygen atoms are removed from de crystal structure. We are asking for 2 days on D2B.				

Oxygen defects and crystal structure of the n = 3 Ruddlesden-Popper System

LaSr₃(Co,Fe,Ga)₃O_{10-δ}

F. D. Prado

Departamento de Física, Universidad Nacional del Sur, Av. Alem 1253, Bahía Blanca, Argentina Instituto de Física del Sur, IFISUR, CONICET, Argentina

Introduction

Several studies have shown that $LaSr_3Fe_{1.5}Co_{1.5}O_{10-\delta}$ exhibits good structural stability and adequate values of oxide ion and electronic conductivity [1,2] for electrochemical applications. More recently, Lee and Manthiram [3] have found that the cathode performance of $LaSr_3Fe_{1.5}Co_{1.5}O_{10-\delta}$ in a SOFC is comparable to the perovskite phase $La_{0.6}Sr_{0.4}CoO_{3-\delta}$. In an

attempt to increase the oxygen vacancy concentration and thereby improve the oxide ion conductivity and develop mixed conductors with lower TEC, Ga has been incorporated in the B site and the solid solutions LaSr₃GaFe₂. $_{x}Co_{x}O_{10-\delta}$ [4] and LaSr₃Fe_{1.5-x/2}Co_{1.5-x/2}Ga_xO₁₀₋ $_{\delta}$ with $0 \le x \le 0.8$ have been investigated [5]. The incorporation of Ga into the crystal lattice of LaSr₃(Fe,Co)₃O₁₀ causes: a) a structural transformation of the unit cell symmetry from tetragonal (S.G. I4/mmm) to orthorhombic (S. G. Fmmm) [4-6] affecting the mixed conducting properties [4], particularly oxygen permeation, although small variations were detected for the power density delivered by single cells [5], b) increment an of the oxygen vacancy reducing concentration the chemical contribution to the total thermal expansion and c) a reduction in the electrical conductivity. The crystal structure of the n = 3 R-P phases contains four non-equivalent oxygen crystal sites (see figure 1). Previous studies [7-9] have located the oxygen vacancies at the O(1) and O(4) sites, while fully occupancy was reported for the O(2) and O(3) crystal sites. In this work, we have investigated the

variations of the crystal chemistry of the n = 3 R-P phases belonging to the system LaSr₃(Fe,Co,Ga)₃O_{10-δ} by NPD. We have determined the oxygen defect structure of the LaSr₃Co_{1.5}Fe_{1.5}O_{10-δ} phase at the working temperatures of the electrochemical applications in the temperature range 20 < T < 900 °C, in air. We are studying the structural transformation from tetragonal (I4/mmm) to orthorhombic (Fmmm) symmetry observed in the LaSr₃(Co,Fe,Ga)₃O_{10-δ} R-P phases when either Fe and Co are replaced by Ga or oxygen atoms are removed from de crystal structure.

Experimental

Samples of LaSr₃Fe_{1.5}Co_{1.5}O_{10- δ} (FP01),LaSr₃Fe₂GaO₁₀ (FP08), LaSr₃Fe_{2.4}Ga_{0.6}O₁₀ (FP09), LaSr₃Ga_{0.6}Co_{0.6}Fe_{1.8}O₁₀ (FP10) and LaSr₃Ga_{0.3}Co_{1.35}Fe_{1.35}O₁₀ (FP18) were prepared by solid state reaction. After the synthesis, the samples were slowly cooled at a rate of 1°C/min in air. Figure 2 shows the location of the samples in a phase diagram of the system LaSr₃(Fe,Co,Ga)₃O_{10- δ} [1,4-7]. Furthermore, samples were prepared with different oxygen content values subject to the following conditions:

a) Sample FP01 y FP08 were prepared under pure O2 at a pressure and temperatura of P = 100 *atm* and T = 500 °C during 6 h.

b) Samples FP09, FP10 and FP18 were reduced at T = 900 °C during 24 h a $pO_2 = 1 \times 10^{-5}$ atm and then fast quenched at room temperature.

c) Samples FP01 and FP10 were reduced at T = 900 °C during 24 h under a pO₂ = 1.6 ×10⁻² atm and then fast quenched.

Neutron Difraction Powder measurements were performed at room temperatura using a Vanadium sample holder. For the compound $LaSr_{3}Fe_{1.5}Co_{1.5}O_{10-\delta}$ (FP01), we have recorded data at T = 250, 500, 700 y900 °C. in air using a quartz simpleholder. The measurements were performed using a wavelenght of λ = 1.594 Å at the D2B line at the ILL.

Preliminary Results

The NPD data obtained for the compound $LaSr_3Fe_{1.5}Co_{1.5}O_{10-\delta}$ at T = 20, 250, 500, 700 and 900 °C have been analyzed using the Rietveld method with Fullprof [10]. The crystal structure was refined systematically on the basis of the tetragonal space group I4/mmm. This analysis combined with titration iodometry allowed us to determine with accuracy the absolute oxygen content of the samples, the occupancy of the oxygen crystal sites O(1) to O(4) and also the coordinates of the oxygen atoms in the unit cell as a function of temperature.

For instance, Figure 3 shows the variation of the total oxygen content of $LaSr_3Fe_{1.5}Co_{1.5}O_{10-\delta}$ as a function of temperature, while Figure 4 exhibits the evolution of the occupancy of the oxygen crystal sites O(1) and O(4) with temperature. The total oxygen content decreases with temperature until the oxygen vacancy concentration reaches a value of 5% at T = 900 °C in air. We have determined the presence of oxygen vacancies mainly in the O(4) crystal sites located at the (FeCo)O₂ plane at the center of the perovskite block. The oxygen vacancy concentration reaches 25% at this crystal site at 900 °C. Moreover, a small concentration of oxygen vacancies, around 2%, was detected at the O(1) crystal sites located at the (La/Sr)O next to the (Fe/Co)O₂ planes containing the O(4) crystal sites. Finally no oxygen vacancies were

detected at the other two crystal sites O(2) and O(3).

Furthermore, we have evaluated the behavior of the crystal structure of this Ruddlesden-Popper phase with temperature. Basically, we have monitored the effects of temperature on the expansion of the rock salt and the perovskite layers. We have found that the rock salt layer thickness remains almost constant with varying temperature and oxygen content, while the perovskite layer is strongly affected by the oxygen atom removal from the crystal structure. The relative movements of the atoms is a consequence of the electrostatic repulsion between cations due to the elimination of oxygen atoms in the middle of the perovskite layer. Similar behavior was also observed for the $Sr_3(Fe,Co)_2O_7$ compound, which is another Ruddlesden-Popper phase with two perovskite layers instead of 3 as is the case of LaSr_3Fe_1.5Co_1.5O_{10-8}.

The NPD data recorded at room temperature for samples containing Ga, LaSr₃Fe₂GaO₁₀ (FP08), LaSr₃Fe_{2.4}Ga_{0.6}O₁₀ (FP09), LaSr₃Ga_{0.6}Co_{0.6}Fe_{1.8}O₁₀ (FP10) and LaSr₃Ga_{0.3}Co_{1.35}Fe_{1.35}O₁₀ (FP18) are currently being analized with the intention to explain the reasons for the structural transformation from tetragonal to orthorhombic symmetry when the oxygen content of the simple is modified. We expect to correlate this structural information with the behavior of the physical properties such as the electrical conductivity and the electrochemical behavior as cathode for SOFC.

Summary

NPD data were collected at the D2B line during two days at room temperature on samples belonging to the system LaSr₃(Fe,Co,Ga)₃O_{10- δ} and as a function of temperature (T = 250, 500, 700 y 900 °C) in air for the sample LaSr₃Fe_{1.5}Co_{1.5}O_{10- δ}. The analysis of the NPD data allowed us to determine the evolution of the defect structure at high temperature of LaSr₃Fe_{1.5}Co_{1.5}O_{10- δ} by determining the occupancy of the different oxygen crystal sites. We have found the oxygen vacancies locates mainly at the O(4) crystal sites, a little fraction locates at the O(1) crystal site, while the cristal sites O(2) and O(3) remains fully occupy. Furthermore we have determined the expansion behavior of the crystal structure as a function of temperature. NPD data corresponding to samples containing Ga, system LaSr₃(Fe,Co,Ga)₃O_{10- δ}, are still under analysis.

Referencias

[1] T. Armstrong, F. Prado, and A. Manthiram, Solid State Ionics 140 (2001) 89.

[2] A. Manthiram, F. Prado and T. Armstrong, Solid State Ionics 152-153 (2002) 647-655.

[3] K. T. Lee and A. Manthiram, Chem. Mater. 18 (2006) 1621-1626.

[4] F. Prado, K. Gurunatham and A. Manthiram, J. Mater. Chem. 12 (2002) 1-7.

[5] F. Prado, J.-H. Kim, A. Manthiram, Solid State Ionics v192, 1 (2011) 241-244.

[6] B. Shankar and H. Steinfink, J. Solid State Chem. 122 (1996) 390.

[7] J. Y. Lee, J. S. Swinnea, H. Steinfink, W. M. Reiff, S. Pei and J. D. Jorgensen, J. Solid State Chem., 1993, 103, 1.

[8] P. D. Battle, W. R. Branford, A. Mihut, M. J. Rosseinsky, J. Singleton, J. Sloan, L. E. Spring and J. F. Vente, Chem. Mater. 1999, 11, 674.

[9] I. D. Fawcett, G. M. Veith, M. Greenblatt, M. Croft and I. Nowik, Journal of Solid State Chem. 155 (2000) 96.

[10] J. Rodríguez-Carvajal, Fullprof: a program for Rietveld Refinement and Profile Matching Analysis of Complex Powder Diffraction Patterns, Laboratoire Léon Brillouin (CEA-CNRS).