Proposal:	5-23-6	81	Council: 4/2015				
Title:	Торос	Topochemically Reduced Iridium Double Perovskite Phases					
Research area: Chemistry							
This proposal is a new proposal							
Main proposer: Michael		Michael HAYWARD					
Experimental	team:	Michael HAYWARD Jacob PAGE					
Local contacts	:	Emmanuelle SUARD					
Samples: Sr2F Sr2C	feIrO4 CoIrO6						
Instrument			Requested days	Allocated days	From	То	
D2B			2	2	02/12/2015	04/12/2015	
D20			0	0			
Abstract:							

We propose to collect neutron powder diffraction data from Sr2FeIrO4 and Sr2CoIrO4 at room temperature to determine their aniondeficient crystal structures. We also propose to collected data at low temperature to determine their magnetically ordered structures. Magnetisation measurements indicate the two phases should be formulated as Sr2M(II)Ir(II)O4 (M=Fe, Co) and as such they represent the first examples of Ir(II) in an extended oxide phase. Neutron powder diffraction data were collected from LaSrNiIrO₆ at room temperature and 5K. Analysis of the data collected at room temperature (Figure 1) confirmed that LaSrNiIrO₆ has a pseudo-cubic monoclinic structure. A model with space symmetry $P2_1/n$ and B-site cation order was refined against the data collected and gave an excellent statistical fit. The crystallographic unit cell obtained from this analysis is shown in Figure 2.

Neutron powder diffraction data collected at 5K had addition peaks compared to the room temperature data. These extra peaks could be attributed to long range magnetic order. A series of models were constructed with highs spin Ni²⁺ (d⁸ s=1) and diamagnetic Ir⁵⁺ (d⁴ J_{eff}= 0) were constructed. The best fit was obtained with a unit cell related to the crystallographic unit cell by a 2x1x2 expansion with G-type antiferromagnetic ordering. In this model the spin vectors are aligned parallel to the crystallographic *c*-axis. The refinement of this model against the data gave an excellent fit and is shown in Figure 3.

Figure 2. Crystallographic unit cell of LaSrNiIrO₆

Figure 1. Observed, calculated and difference plots from the refinement of a $P2_1/n$ model against neutron data collected from LaSrNiIrO₆ at room temperature

Figure 3. Observed, calculated and difference plots from the refinement of a $P2_1/n$ model against neutron data collected from LaSrNiIrO₆ at 5K. Black tick marks are structural peaks, blue tick marks are magnetic peaks and red tick marks are the unknown cubic phase.

Figure 4. The refined magnetic structure of LaSrNiIrO6. Green octahedra represent $\rm NI^{2+},$ blue octahedra represent $\rm Ir^{5+}$