Experimental report

Proposal: 5-23-690				Council: 10/2016			
Title:	CO2	CO2 capture on Zeolite A and ZK4with various non-framework cation compositions					
Research area: Materials							
This proposal is a new proposal							
Main proposer: Dariu		Dariusz WARDECK	I				
Experimental team:		Dariusz WARDECKI					
		Przemyslaw RZEPKA					
Local contacts: Thomas HANS		Thomas HANSEN					
		Vivian NASSIF					
		Laetitia LAVERSENN	νE				
Samples:	K1.6Na5.75	Si16.7Al7.3O48					
	K8.4Na3.6Si12Al12O48						
K7.3Si16.7Al.7.3O48							
K3.3Na4Si16.7Al7.3O48							
K5Na7Si12A112O48							
K4Na8Si12Al12O48							
Instrument			Requested days	Allocated days	From	То	
D1B			6	6	13/03/2018	19/03/2018	
D20			6	0			
Abstract							

Abstract:

In this project, we would like to use the neutron powder diffraction (NPD) technique for studying different compositions of zeolites |NaK|-A and |K|-ZK4 to further quantify the changes in the crystal structures upon adsorption of CO2 sorption. We expect to determine the cation positions in the zeolites and their changes caused by adsorption of CO2. Since neutrons are more sensitive for C (b=6.65 fm) and O (b=5.81 fm) as compared with XRD, we also expect to localize the CO2 molecules in the framework. Ion-exchanged zeolites play a potentially important role in the capture of greenhouse gases (e.g. CO2) and for the upgrading of biogas and natural gas.

Experimental Report for 5-23-690

CO₂ capture on Zeolite A and ZK4 with various non-framework cation compositions

Dariusz Wardecki^{1,2}, Przemyslaw Rzepka³, Radoslaw Przenioslo¹, Niklas Hedin³

¹Inst. of Experimental Physics, University of Warsaw, Poland

²Depart. of Chemistry and Chemical Engineering, Chalmers University of Technology, Sweden

³Depart. of Materials and Environmental Chemistry, Stockholm University, Sweden

Zeolite A is known for its potential application for CO_2 capture [1]. In this report we present results of the neutron powder diffraction (NPD) experiment concerning in-situ measurements of the structural changes during CO_2 adsorption in zeolite $|Na_{12-x}K_x|$ -A. In particular we were interested in what positions in the zeolite framework are occupied by the adsorbed CO_2 molecules. The results of this experiment were published in Ref. [2].

The NPD experiment was performed on the D1B instrument with a constant wavelength of 2.52 Å and in the range of 2θ : 3 - 120° . Prior to the diffraction measurements the dehydrated samples with different *x* values were loaded and sealed in aluminum containers in a glovebox under a helium atmosphere and mounted to a gas stick. The gas stick was connected to the CO₂ gas-dosing system and placed in the neutron beam. The samples were measured at vacuum, 50, 100, 400, 700 and 1000 mbar of CO₂. The NPD data was analyzed using the Rietveld method [3] and the Topas 5 program [4].

The initial structural model was taken from Ref. [4]. Figure 1 shows an example of the fit of the model to the NPD data for x = 3 for the dehydrated sample (a) and after loading of CO₂ at 1000 mbar. From the data analysis, we observe three different positions of adsorbed CO₂ molecules within the large α -cavities in the zeolite structure. Site I of physisorbed CO₂ bridged two cations at neighboring 8-rings and was pulled by Na⁺ at 6-ring. This site was filling up most of the capacity of the α -cavities.

The CO_2 molecules at site II are coordinated to a cation in the 8-ring. However, the position differed significantly if the 8-ring site contained Na⁺ or K⁺. Small Na⁺ coordinated the CO₂ molecules near the center of the 8-ring plane whereas large K⁺ pushed them away towards the

center of α -cage. 35% of the CO₂ adsorbed on the 8-ring was chemisorbed and formed chemical bonds with the oxygen atoms of the framework as carbonate-like species. Chemisorbed CO₂ as well as different positioning of physisorbed CO₂ were also confirmed by *in situ* infrared spectroscopy. The detected site III was directly attracted by Na⁺ at 6-ring, however its occupancy was very low.

Figure 1: Model fitting to the diffraction data for $|Na_{12-x}K_x|$ -A with x = 3, for the dehydrated sample (a) and after CO₂ loading at 1000 mbar (b). After [2].

References

[1] T.-H. Bae, M.R. Hudson, J.A. Mason, W.L. Queen, J.J. Dutton, K. Sumida, K.J. Micklash, S.S. Kaye, C.M. Brown, J.R. Long, (2013) *Energy and Environmental Science*, 6 (1), pp. 128-138.

[2] P. Rzepka, Z. Bacsik, S. Smeets, T. Hansen, N. Hedin, D. Wardecki, (2018) *J. Phys. Chem. C*, 122, pp. 27005 – 27015.

- [3] H. M. Rietveld (1969) J. Appl. Crystallogr., 2, pp. 65-71.
- [4] A.A. Coelho, (2018) Journal of Applied Crystallography, 51 (1), pp. 210-218.