Experimental report

Proposal:	5-23-7	01		Council: 4/20	ouncil: 4/2017		
Title:	Tempe	erature and synthetic co	nditions dependence of the oxygen vacancyformation on LaNi0.6Fe0.4O3-d perovskite				
Research are	a: Materi	als					
This proposal is	a resubn	nission of 5-23-682					
Main propos	er:	Maria Isabel ARRIO	RTUA				
Experimental team:		Juan Felipe BASBUS					
		Analia CABRERA					
		Gabriel Julio CUELLO)				
Local contacts:		Gabriel Julio CUELLO)				
Samples: La	Ni0.60Fe	0.40O3					
Instrument			Requested days	Allocated days	From	То	
			3	1	04/06/2018	05/06/2018	

The development of new materials, as well as advanced solid oxide fuel cell (SOFC) components fabrication techniques, is critical in reducing operation temperature and subsequently lessening the cost of these systems. Particularly, combustion methods have been proposed as one of the most promising methods to prepare perovskite oxide powders to be used in SOFC technology. The characteristics of the combustion synthesis oxide powders are typically determined by several synthetic parameters, such as the species of fuel and oxidizer reactants, the fuel/oxidizer ratio, and the subsequent sintering treatment after combustion process.

The cathode contact material composition is required to possess high electrical conductivity and appropriate sintering activity to minimize the resistance of the contact layer itself and to protect the steel substrate from excessive oxidation. Besides, it should demonstrate an appropriate thermal expansion behaviour and high thermochemical and structural stability in the oxidizing cathode environment. For our study the LaNi0.6Fe0.4O3-d; perovskite has been selected for its use as contact layer.

Temperature and synthetic conditions dependence of the oxygen vacancy formation on $LaNi_{0.6}Fe_{0.4}O_{3-\delta}$ perovskite

The aim of this experiment was the determination of oxygen vacancies that give rise to significant changes in the electronic and ionic conductivity (limiting factor in the performance of these compounds at the operating temperatures of SOFCs). Nevertheless, due to the samples obtained under different preparation conditions, we have not been able to obtain appropriate results from the measurements, and we have decided to achieve the preparation of the samples under study in order to research suitable samples to be characterized using high resolution neutron diffraction technique.