Experimental report

Proposal:	5-23-774	Council: 4/2021				
Title:	Ruthenium-containing topochemically reduced oxides and oxyhydrides					
Research area: Chemistry This proposal is a new proposal						
Experimental team:						
Local contacts	Emmanuelle SUARD	Emmanuelle SUARD				
Samples: LaS	rCoRuO4					
-	rNiRuO3H3					
LaS	rCoRuO4H2					
Luc	rCoRuO5					
		Requested days	Allocated days	From	То	

cations in unusual oxidation states and coordination geometries, which cannot be prepared by conventional high-temperature routes. Using these techniques we have prepared LaSrCoRuO5, LaSrCoRuO4 and LaSrCoRuO4H2 from LaSrCoRuO6 and LaSrNiRuO3H3 from LaSrNiRuO6.

We propose to collected high-resolution neutron powder diffraction data to determine their crystal and magnetic structures. Neutron diffraction data are essential to this study due to the low X-ray scattering powder of oxide and hydride anions, which means characterization by X-ray powder diffraction is not possible.

Experimental report for Experiment 5-23-774

Topochemically Reduced Ruthenium-containing Perovskites

Neutron powder diffraction data were collected for samples of LaSrNiRuO₃H₃, LaSrCoRuO₄H₂, LaSrCoRuO₅ at room temperature and 5 K and from LaSrCoRuO₄ and Ba₃CoRu₂O₆H₃ at room temperature only, using the D2B diffractometer.

Initial analysis reveals that LaSrNiRuO₃H₃ and LaSrCoRuO₅ exhibit a complex superstructure consistent with anion ordering and anion-vacancy ordering respectively. Data from both phases can be fit by Pawley type refinements, as shown in Figure 1. Complete structure solution is still in progress.

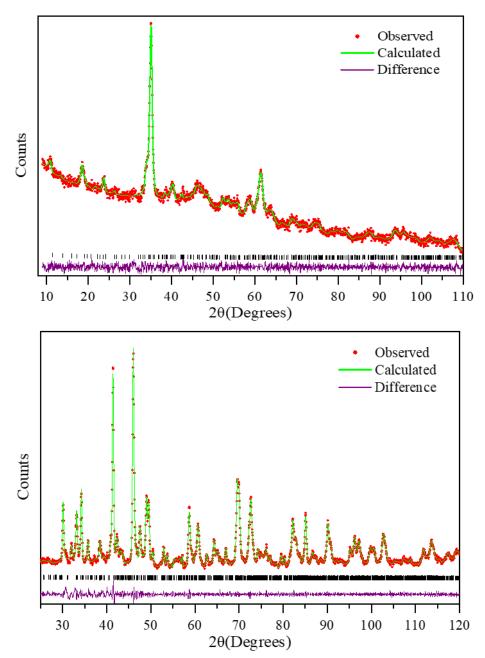
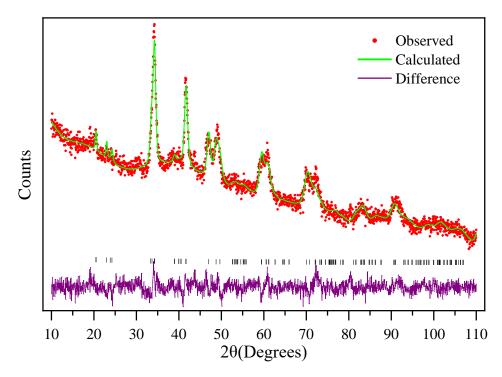
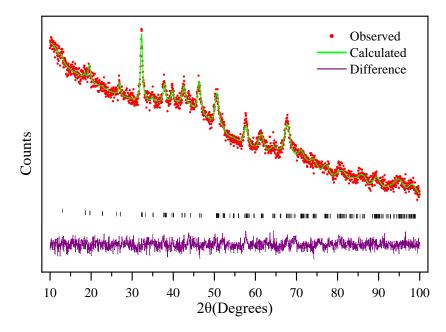
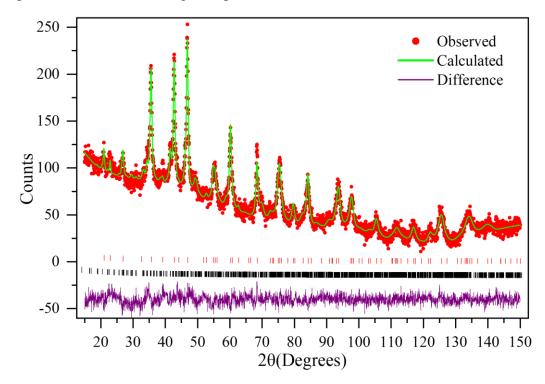


Figure 1. Observed, calculated and difference plots from the Pawley refinement of $LaSrNiRuO_3H_3$ (top) and $LaSrCoRuO_5$ (bottom).

Diffraction data collected from LaSrCoRuO₄H₂ can be refined with a body-centred monoclinic cell (S.G. I11m) with oxide and hydride anions adopting a disordered arrangement at the equatorial sites.


Figure 2. Observed, calculated and difference plots from the refinement of I11m structure model against neutron powder diffraction data collected from LaSrCoRuO₄H₂.

Neutron powder diffraction data collected from $Ba_3CoRu_2O_6H_3$ can be fit with an orthohexagonal model (S.G. *Cmcm*), with oxide and hydride anions distributed in a disordered manner throughout the structure.

Figure 3. Observed, calculated and difference plots from refinement of *Cmcm* structural model against neutron powder diffraction data collected from Ba₃CoRu₂O₆H₃

LaSrCoRuO₄ can be refined with an infinite-layer structure (S.G. I4/m). analogous to that reported for Sr₂FeIrO₄ at high temperature.

Figure 4. Observed, calculated and difference plot from refinement of I4/*m* structural model against neutron powder diffraction from LaSrCoRuO₄