Experimental report

	ogenation-dehydroge	nation of InPd3 an	d FePd3by in situ	u neutron diffraction			
new proposal			Research area: Chemistry				
	This proposal is a new proposal						
: Holger KOHLMA	NN						
eam: Anton WERWEIN							
Raphael FINGER							
Christian PFLUG							
André GOETZE							
Holger KOHLMAN	IN						
Thomas HANSEN							
3							
	Requested days	Allocated days	From	То			
	3	3	05/10/2018	08/10/2018			
	Anton WERWEIN Raphael FINGER Christian PFLUG André GOETZE Holger KOHLMAN	team: Anton WERWEIN Raphael FINGER Christian PFLUG André GOETZE Holger KOHLMANN table Thomas HANSEN	ieam: Anton WERWEIN Raphael FINGER Christian PFLUG André GOETZE Holger KOHLMANN ia Thomas HANSEN i3 Requested days Allocated days	ieam: Anton WERWEIN Raphael FINGER Christian PFLUG André GOETZE Holger KOHLMANN ia Thomas HANSEN i3 Requested days Allocated days From			

The hydrogen-induced atomic rearrangements in intermetallic compounds MPd3 (M = In, Fe) will be studied by in situ neutron powder diffraction. A user-supplied gas-pressure cell with laser heating installed on D20 will provide the means to collect diffraction patterns as a function of temperature (up to 600 K) and deuterium gas pressure (up to 100 bar) with a time resolution of two minutes. This will allow to identify intermediates including deuterium positions in the crystal structures and provide an understanding of the underlying principle of hydrogen-induced rearrangement in intermetallics. For InPd3, the series of superstructures of the cubic-close packing (ccp) TiAl3 type - ZrAl3 type - PbTl2Pd9 type - AuCu3 type is to be monitored upon hydrogen uptake. For FePd3, the effect of atomic order (Fe/Pd, AuCu3 type and Cu type) on hydrogenation and hydrogen-induced ordering will be elucidated. These reactions are of importance in hydrogen embrittlement of materials and in catalytic processes.

Reaction pathways of hydrogenation-dehydrogenation of InPd₃ and FePd₃ by *in situ* neutron diffraction (experiment 5-24-613)

André Götze, Holger Kohlmann, Leipzig University, Germany

InPd₃ crystallizes in ordered superstructures of the cubic close packing (ccp), the ZrAl₃ and the TiAl₃ type. Upon hydrogen uptake, a rearrangement to another ccp superstructure, the AuCu₃ type, occurs with hydrogen atoms occupying octahedral [Pd₆] voids [1]. The hydrogenation and dehydrogenation was followed *in situ* in this experiment on a ZrAl₃ type sample using deuterium in a sapphire singlecrystal cell [2]. When increasing deuterium pressure at 400 K to 5.0 MPa, a new phase is formed, InPd₃D_{<0.7} with a deuterium filled ZrAl₃ type structure. Raising temperature to 500 K leads to the cubic deuterides InPd₃D_{<0.8} with a cubic antiperovskite type structure [1]. Heating in vacuum leads to a decrease in deuterium content of the cubic deuterides, and upon complete deuterium release ZrAl₃ type InPd₃ is restored (Fig. 1). Due to the sluggish reaction of the ZrAl₃ type sample and time constraints (FePd₃ samples see below) the TiAl₃ type sample could not be measured as foreseen in the proposal text.

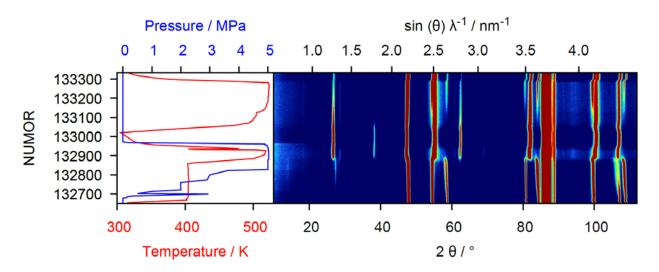


Figure 1: In situ neutron powder diffraction data of the deuteration of InPd₃ taken on diffractometer D20 at $\lambda = 1.86796(3)$ Å in a single crystal sapphire cell [2] under various deuterium pressures and temperature conditions. Intensities are in false colors, each measurement (NUMOR) with two minutes data collection time.

To study the influence of structural order in FePd₃ on hydrogenation properties, *in situ* neutron powder diffraction on an ordered and a disordered sample using deuterium in a sapphire single-crystal cell [2] was performed. Deuterium gas pressure was slowly increased up to 8.0 MPa, before raising the temperature to about 550 K (Fig. 2). FePd₃ with ordered and disordered structure showed less deuterium uptake than expected from previously executed laboratory X-ray diffraction experiments. For the disordered compound the unit cell increases only by 0.05% ($a_{before} = 3.8512(4)$ Å, $a_{after} = 3.8518(2)$ Å) and the site occupancy factor (SOF) of deuterium is refined to zero (Wyckoff position 4*b*), i. e. it does not take up a significant amount of deuterium. Furthermore, no ordering of

the metal atoms is observed. The unit cell volume of ordered FePd₃ expanded by 0.2% $(a(\text{FePd}_3) = 3.85158(9) \text{ Å}, a(\text{FePd}_3\text{D}_{0.03(1)}) = 3.85416(2) \text{ Å})$ during deuteration. The deuterium atoms occupy [Pd₆] octahedral voids as determined by difference Fourier analysis. During the *in situ* experiment (Fig. 2) the superstructure reflections of FePd₃ and its deuteride are broadened due to very small magnetic domains of the ferromagnetic compound analogous to MnPd₃ [3]. The width of these reflections decrease when reaching the Curie temperature ($T_{\rm C}(\text{FePd}_3) = 499.1 \text{ K}$ [4]). Additionally, the intensities of the superstructure reflection decrease and β -PdD_x is formed. Both effects are reversible during the cooling process.

Complete serial refinements based on the *in situ* diffraction data for both FePd₃ and InPd₃ samples are in progress.

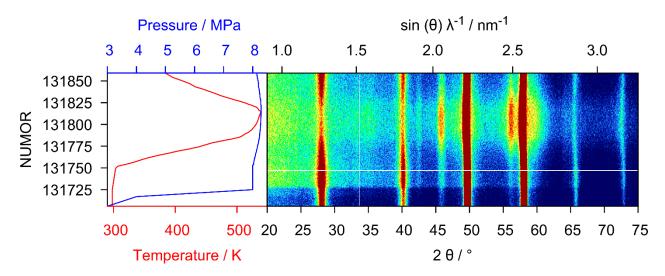


Figure 2: In situ neutron powder diffraction data of the deuteration of ordered FePd₃ taken on diffractometer D20 at $\lambda = 1.86796(3)$ Å in a single crystal sapphire cell [2] under various deuterium pressures and temperature conditions. Intensities are in false colors, each measurement (NUMOR) with two minutes data collection time.

Literature

- H. Kohlmann, A. V. Skripov, A. V. Soloninin, T. J. Udovic, J. Solid State Chem. 2010, 183, 2461-2465
- [2] A. Götze, H. Auer, R. Finger, T. C. Hansen, H. Kohlmann, Phys. B (Amsterdam, Neth.) 2018, 551, 395-400
- [3] P. Önnerud, Y. Andersson, R. Tellgren, P. Nordblad, J. Solid State Chem. 1997, 128, 103-114.
- [4] G. Longworth, Phys. Rev. 1668, 172, 572-776.