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Abstract:

We have identified a transition-metal hydroxide perovskite that combines correlated proton disorder with geometrically frustrated S=1/2
magnetism of Cu2+ ions. We expect that similarly to water ice, the proton network in CuSn(OH)6 may order under hydrostatic pressure.
Therefore we are interested in measuring neutron diffraction under pressure in the Paris-Edinburgh cell up to ~5 GPa at temperatures
down to ~80 K to look for structural changes in the proton network. Both deuterated and protonated phase-pure powder samples are
already available. If any such changes are revealed, their influence on magnetic properties will be addressed in follow-up studies.
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Introduction

Copper tin hydroxide CuSn(OH)es (mineral name: mushistonite
[1]) is a rare example of a three-dimensional spin-¥2 system in
which magnetic Cu?* ions form a face-centered sublattice that
serves as a playground for studying frustrated quantum-spin
magnetism in 3D. On the other hand, this double perovskite
represents an excellent model system for studying the interplay
of magnetism and proton disorder [2]. From this perspective, it
serves as a magnetic analogue of water, and we intended to
study its structure as a function of pressure in a Paris-Edinburgh
cell to search for possible structural phase transitions that could
be related to proton ordering.

Fig. 1 The crystal structure of CuSn{OD),

Experimental configuration and results

Our deuterated CuSn(OD)s powder was measured on 7—-11 September, 2023, on the D20 high-
intensity two-axis diffractometer at the ILL, France. Neutrons with the wavelength A = 2.41 A were
selected using a Ge (113) monochromator. We mixed the powder with a small amount of Pb to
establish a standard for determining on-sample pressure and its homogeneity. Afterward, we
placed it in a Zr-Ti (null-scattering alloy) gasket inside the standard Paris-Edinburgh cell within a
cryostat. We were interested in the temperature range of 80-300 K, and hydrostatlc pressure up
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orthorhombic Pnnn (Fig. 1). In addition, Fig. 2. A selection of diffraction patterns measured at
neutron diffraction reveals strong disorder on  different pressures.



all hydrogen or deuterium sites, similar to that previously reported for MNnSn(OH)¢ [4]. As in the
case of conventional water ice, each hydrogen atom statistically occupies one of two possible
equilibrium sites. The occupation also follows nontrivial “ice rules”, namely that no two H/D sites
facing each other or belonging to the same oxygen can be occupied simultaneously. This results
in a disordered but highly correlated O- - -O-H bond network. In CuSn(OH)s we have the same
situation with pairs of equivalent hydrogen positions facing each other. In total there are 3

inequivalent positions for oxygen (O1, O2, O3) and 9
positions for hydrogen/deuterium (D12, D13, D23, D24,
D21, D32, D33, D34, D35) which are all split at ambient
pressure.

Selected distances between equivalent H/D sites are
shown in Fig. 3. These distances were extracted from
the refined crystal structures after processing the
neutron data in the FullProf software [5]. Examples of
fitting neutron powder data at different pressures and
temperatures can be seen in Fig. 4. As pressure
increases, the D34 and D35 sites bonded to the O3
oxygen first merge into a single split site, as shown in
Fig. 3 (a). Simultaneously, the O1-D13 and 02-D23
bonds rotate, forming a hydrogen bond with another
neighbour, as shown in Fig. 2 (b,c) respectively. In the
case of the D12 site in Fig. 2 (a), the distance between
the two equivalent sites facing each other is reduced but
no merging occurs up to 7 GPa. Our measurement was
interrupted at this pressure due to the rupture of the
sample gasket (inset). By extrapolation, we estimate
that the ordering transition on this site is expected at
approximately 13-14 GPa.

We performed the measurements at several
temperatures, but as one can see from Fig. 2, the atomic
positions and bond angles do not show any significant
temperature dependence. All the extracted distances
between equivalent H/D sites only vary with temperature
by no more than a few tenths of an Angstrom, which is
within statistical uncertainty.

As can be seen from Fig. 3 (a), this experiment lacked
data at higher pressures to reach proton-ordering
transitions on more than just one proton site. During the
transition from 7 GPa to approximately 9 GPa, the cell
with the sample burst with a loss of pressure, and we did
not have enough remaining time to reload the pressure
cell. Therefore, a continuation proposal to complete our
dataset with higher-pressure data is justified. The data
available so far gives convincing evidence that
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Fig. 3. Pressure dependence of the
distances between some split H/D sites
in the crystal structure of deuterated
mushistonite CuSn(OD)s, obtained from

the preliminary r
data. The insets

efinement of our D20
show the evolution in

the geometry of the OH bonds.



Intensity (arb.units)

hydrostatic pressure causes a whole cascade of proton-ordering transitions in hydroxide
perovskites that deserves a closer investigation.
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Fig. 4. Neutron powder diffraction data at different pressures and temperatures. Red — observed
intensity; black — calculated intensity; green — peak positions; blue — residuals.



