Experimental Report

Proposal:	5-31-2266	Council:	10/2012	
Title:	Magnetic characterisation of mixed-cation low-dimensional chain structures			
This proposal is a new proposal				
Researh Area:	Chemistry			
Main proposer:	GREAVES Colin			
Experimental Team: GREAVES Colin				
Local Contact:	RITTER Clemens			
Samples:	CoxMn(1-x)Sb2O4			
Instrument	Req. Day	s All. Days	s From	То
D2B	2	2	24/07/2013	26/07/2013
Abstract:				
Schafarzikite (FeSb2O4) is tetragonal with 1-D chains of FeO6 octahedra along [001]. We have previously shown that mixed Fe/Co cations within the chains lead to a change in magnetically ordered structure, consistent with the FeSb2O4 and CoSb2O4 parent phases. This experiment plans to determine the nuclear and magnetic structures of mixed Mn/Co				
analogues. Here, the strong spin-orbit coupling and magnetic interactions of Co are expected to dominate those of Mn, leading to a fundamentally different groundstate even for low cobalt content. Associated with this is the effect of Co on the antiferromagnetic transition, which is very gradual in MnSb2O4 but sharp in CoSb2O4.				

Experimental Report 5-31-2266

Both MnSb₂O₄ and CoSb₂O₄ adopt the Schafarzikite (MX₂O₄) structure-type, characterised by pseudo-1D chains of edge-sharing [MO₆] octahedra aligned along (001). In this study, Mn_xCo_{1-x}Sb₂O₄ has been synthesised for x = 0.2, 0.4, 0.5, 0.6 and 0.8 by solid-state reaction within sealed quartz ampoules. NPD data (D2B) have been collected at 298 K and 5 K for the entire composition range, and at a selection of intermediate temperatures for x = 0.2. Data have been refined using the GSAS package.

Room temperature results show a linear increase in unit cell parameters with increasing x, and a gradual change in atomic coordination from CoSb_2O_4 -like to MnSb_2O_4 -like. The O2_{ax} position shows a large thermal displacement parameter for all compositions; refinement of an anisotropic model shows displacement mainly in the *ab*-plane. This indicates local rotation of the [MO₆] octahedra, consistent with the different bonding requirements of Co^{2+} and Mn^{2+} . On cooling, the displacement parameter for M in $\text{Mn}_{0.2}\text{Co}_{0.8}\text{Sb}_2\text{O}_4$ shows a dramatic increase below 60 K. A number of refinement models have been tested, suggesting that the increase is related to a local displacement of the [MO₆] octahedra, occurring over a similar temperature range as the magnetic ordering transitions.

The magnetic structures of $Mn_xCo_{1-x}Sb_2O_4$ show a gradual change from C_z type (ferromagnetic (FM) chains, antiferromagnetic (AFM) planes) to A_x -type (AFM chains, FM planes) with increasing x (figure 1). Small amounts of Co^{2+} within the $MnSb_2O_4$ structure do not cause a significant change in magnetic groundstate as anticipated, although the observed behaviour is very similar to that seen in $Fe_xCo_{1-x}Sb_2O_4$. The refined magnetic moments show a reduced magnitude to the expected values, connected with the disruption of magnetic interaction on cation mixing.

Figure 1: Refined magnetic moments from 5 K NPD data for $Mn_xCo_{1-x}Sb_2O_4$.

Figure 2: NPD fitted profiles for $Mn_{0.5}Co_{0.5}Sb_2O_4$ at 5 K. Black tickmarks-nuclear reflections; red tickmarks-magnetic reflections.