Experimental Report

Proposal: 5-31-2284 Council: 10/2012

Title: Magnetic order in urea-based Mn2-Nb(CN)8 chiral molecular magnetand in its non-chiral counterpart

This proposal is a new proposal

Researh Area: Physics

Main proposer: BALANDA Maria

Experimental Team: BALANDA Maria

BUDZIAK Andrzej

Local Contact: HANSEN Thomas

Samples: (1) [Mn(urea)2(H2O)]2[Nb(CN)8]

(2) [Mn(H2O)2]2[Nb(CN)8].4H2O

Instrument	Req. Days	All. Days	From	То
D20	2	1	27/02/2013	28/02/2013

Abstract:

The proposal considers two 3D molecular magnets: optically active chiral [Mn(urea)2(H2O)]2[Nb(CN)8], Tc = 43 K (sample A) and the non-chiral [Mn(H2O)2]2[Nb(CN)8].4H2O of Tc = 47 K (sample B). The compounds belong to the TII-L-[Nb(CN)8] family, (T = Mn, Fe Ni, L = nonmagnetic organic ligand) which shows various type of functionalities. The structure is tetragonal, space group for A is P41 and for B - I4/m. A and B are soft ferrimagnets with magnetization of saturation at T= 2 K equal to 9 Bohr magnetons permol. Our plan is to determine the order of magnetic moments below the transition temperature for both compounds. We apply for 2 days at the D20 diffractometer, lambda=2.4 Å, T=300 K, 2 K, 20 K, 30 K, 40 K, 50 K and 150 K. Due to the crystallographic complexity, data should be taken with the Soller collimator to assure good resolution. For the neutron diffraction experiment samples A and B will be prepared in the deuterated form and checked with XRD, magnetic and IR measurements.

Ex Number: **5-31-2284** Instrument **D20** 27/02/2013 - 28/02/2013

Magnetic order in urea-based Mn₂-Nb(CN)₈ chiral molecular magnet and in its non-chiral counterpart

Maria Bałanda¹, Andrzej Budziak¹, Thomas Hansen²

¹The H. Niewodniczański Institute of Nuclear Physics PAN, 31-342 Kraków, Poland

²Institute Laue-Langevin, Grenoble, France

Introduction

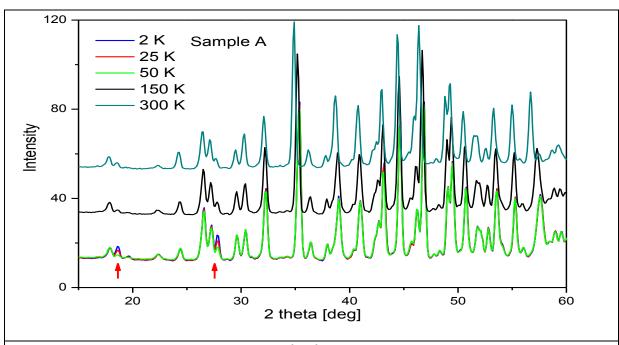
Neutron diffraction experiment has been performed on deuterated samples of two molecular magnets:

- sample A $[Mn(urea)_2(H_2O)]_2[Nb(CN)_8]$, (in short ureaMn2Nb)
- sample \mathbf{B} $[\mathrm{Mn}(\mathrm{H}_2\mathrm{O})_2]_2[\mathrm{Nb}(\mathrm{CN})_8]^4\mathrm{H}_2\mathrm{O}$, (in short Mn2Nb).

The compounds exhibit 3D frameworks based on cyanido-bridges linking Mn^{II} and Nb^{IV} centers. The urea ligand $CO(NH_2)_2$ molecule, leads to formation of an optically active chiral network (sample **A**), which shows second harmonic generation (SHG), strongly enhanced below magnetic transition temperature T_c of 43 K. Sample **A** can be relatively easily transformed to the sample **B**, which is a non-chiral magnet of $T_c = 47$ K and may be regarded as a reference sample. According to D. Pinkowicz et al. (Chem. Mater. **23** 2011 21) and J.M. Herrera et al. (C.R. Chimie **11** 2008 1192) the compounds belong to the tetragonal system, space group $P4_1$ (**A**) and I4/m (**B**). Unit cell dimensions are equal to a=10.450(5) Å, c=22.736(4) Å for sample **A** and a=12.080(2) Å, c=13.375(4) Å for **B**.

Experimental

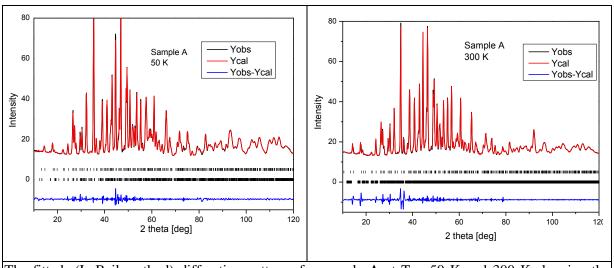
Powder samples of ca. 1 g (**A**) and ca. 0.5 g (**B**) were packed to the vanadium container (ϕ =8 mm) and placed in the orange cryostat. Neutrons wave length was 2.41 Å, the D20 instrument worked in the high resolution mode. The following diffraction patterns in the 2 θ range 0.1°-150° were obtained:


Sample A (ureaMn2Nb): long runs at constant temperature 300 K, 150 K, 50 K, 40 K, 25 K and 2 K and a series of short runs during the temperature change;

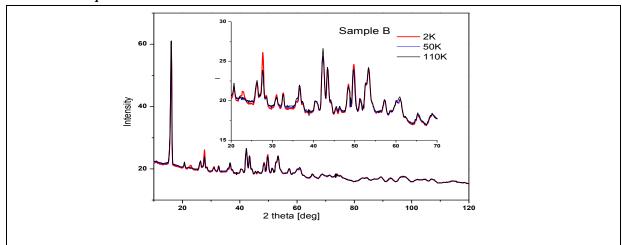
Sample **B** (Mn2Nb): runs at constant temperature 110 K, 50 K and 2 K and a series of short runs during the temperature change.

When cooled below the appropriate T_c , both samples showed magnetic contribution to the intensity of some neutron reflections. No extra reflections were observed.

Results - Sample A

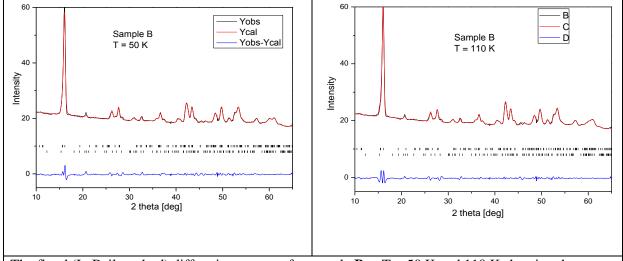

In order to refine the crystal structure of $\bf A$ above T_c , the data recorded at 50 K, 150 K and 300 K have been worked-out using the Fullprof programme. It appeared, that in addition to the main chiral $\bf A\alpha$ phase (Space group P 4₁) the patterns contained contribution from the centric $\bf A\beta$ polymorph (Space group P -1). This parasitic $\bf \beta$ phase was not discovered with the XRD check before the ND experiment because of the very similar structure and peaks overlap.

Neutron diffraction patterns in the $2\theta=15^{\circ}\text{-}60^{\circ}$ range for sample **A** of T_c =43 K at different temperatures (shown). Red arrows point to the reflections with strongest magnetic contribution observed at $2\theta=18.65$ deg and 119.62 deg.


The table below gives the unit cell parapeters determined for the $\mathbf{A}\alpha$ phase (Space group P 4₁) and for the $\mathbf{A}\beta$ polymorph (Space group P -1).

	a	b	С	alpha	beta	gamma
Αα 50 Κ	10.416167	10.416167	22.484581	90.000000	90.000000	90.000000
Αβ 50 Κ	10.446829	10.438538	11.445728	82.993385	82.219284	88.371002
Αα 300 Κ	10.408245	10.408245	22.914141	90.000000	90.000000	90.000000
Аβ 300 К	10.451903	10.448380	11.490791	83.051971	82.435600	88.189262

The fitted (LeBail method) diffraction patterns for sample **A** at T = 50 K and 300 K showing the presence of the additional β phase of the structure similar to that of the α phase.


Results - Sample B

Neutron diffraction patterns for sample **B** of T_c =47 K at different temperatures (shown). Reflections with strongest magnetic contribution appear at $2\theta = 22.25$, 22.85, 27.02 27.67 and 41.77 deg .

The reference sample **B** appeared to be also contamined with the secondary phase and consisted of the expected **B1** phase (Space group Pmmm) and of unwanted **B2** phase (Space group P 21/n). The table below gives the unit cell parapeters determined for the **B1** and **B2** phase at T = 50 K and 110 K.

	a	b	С	alpha	beta	gamma
B1 50 K	12.982722	12.075404	12.194000	90.000000	90.000000	90.000000
B1 50 K	7.326292	14.378647	18.065590	90.000000	90.000000	90.000000
B2 110 K	13.253606	12.073117	12.194001	90.000000	90.000000	90.000000
B2 110 K	7.331159	14.374569	18.078699	90.000000	90.000000	90.000000

The fitted (LeBail method) diffraction patterns for sample $\bf B$ at $T=50~\rm K$ and $110~\rm K$ showing the presence of the expected $\bf B1$ phase (Space group Pmmm) and the unwanted $\bf B2$ phase (Space group P 21/n).

Conclusion

Because of the presence of the unwanted extra phases of the similar structure determined in $\bf A$ and $\bf B$ samples, it was not possible to separate the individual contributions and to analyse the spectra below the T_c ordering temperatures. After successful synthesis of the deuterated, single phase sample $\bf B$, we would like to continue this subject and submit a next proposal.