Proposal:	5-31-2431			Council: 4/2015		
Title:	Magnetic structure of spin orbit coupled transition metal chains					
Research area: Physics						
This proposal is a resubmission of 5-31-2363						
Main proposer	: N	Marein RAHN				
Experimental t	eam: A	Andrew PRINCEP				
	Ν	Marein RAHN				
Local contacts:	1	Thomas HANSEN				
Samples: Sr4 In	r O6					
Ca4 I	Rh O6					
Instrument		Requested days	Allocated days	From	То	
D20			2	2	31/10/2015	03/11/2015

Abstract:

It is difficult to predict the ground states of 5d transition metal oxide, as their electrons may be strongly correlated, sensitive to the surrounding crystal field symmetry and their spin- and orbital angular momentum strongly coupled. We propose to study two new compounds from this family, which combine this complex situation with low dimensionality. We have synthesised two isostructural and isoelectronic compounds Ca4IrO6 and Sr4IrO6. Their electronic ground states should represent the same electronic situation with different strengths of spin orbit coupling - which would yield an important comparison. To this end, we propose to characterise the antiferromagnetic order in our two samples (setting in at 10 and 12 K, respectively) by magnetic neutron powder diffraction.

An equivalent previous proposal to D2B (#5-31-2363) had been rejected on grounds of the magnetic moment being too small. We here follow the panel's recommendation to re-submit to D20. We expect a magnetic moment of 0.3 to 0.5 Bohr magnetons, which should yield an appreciable signal on D20.

-1.5

-2

0 Q_x (A⁻¹)

Magnetic refinement & representational analysis

- the trigonal (R-3c) unit cell of these compounds contains six magnetic ions
- ordering of the Rh magnetic moments on this 6b (0,0,0) Wyckoff site was considered with either propagation vectors

k₁=(1/2 1/2 0) or k₂=(0 1/2 1)

• each of these propagation vectors yields two irreducible representations, Γ_1 and Γ_3

- DFT (GGA/PAW) calculations for the corresponding iridate had determined the Ir-O bond directions as magnetic easy axes. (Calder et al., PRB **89**, 081104(R), 2014)
- the present data was fitted in the four irreducible representations (k_1 / k_2 ; each Γ_1 / Γ_3) with the Rh magnetic moment directed along the three axes of the RhO₆ octahedron (1-2; 3-4; 5-6; *cf.* figure)

M. Rahn Nov. 2015

- The best fit is achieved in the setting k_1/Γ_1 , with the magnetic moment oriented along the 1-2 axis (*cf.* figure above).
- This magnetic structure corresponds to the model proposed for Sr₄IrO₆.

(Calder et al., PRB 89, 081104(R), 2014)

D20: Magnetic structure of Sr₄IrO₆

- As for Ca₄RhO₆, several powder diffraction patterns were obtained at temperatures between 1.5 and 20 K.
- In the case of the iridate, the experiment is impeded by the strong neutron absorption and smaller moment size of Ir.
- Several magnetic peaks appear below *T*_N~11 K

 additional datasets between 7 K and 12 K have been obtained very recently (*data analysis in progress*).

M. Rahn Nov. 2015

Magnetic refinement & representational analysis

- The analysis of the magnetic phase in Sr₄IrO₆ is fully analogous to that of Ca₄RhO₆.
- Also in this case, the choice of k_1/Γ_1 with magnetic moment along the 1-2 Ir-O bonds (cf. figure above) produced the best fit. However, fits with k_2/Γ_1 and the moment oriented along the 3-4 axis are only marginally inferior.

