Experimental report

Proposal:	oposal: 5-31-2459		Council: 4/2016					
Title:	The m	The magnetic structures of the newR3Pd5 compounds ($R = Tb$, Ho)						
Research area: Materials								
This proposal is a new proposal								
Main proposer:		Alessia PROVINO						
Experimental team:								
Local contacts:		Clemens RITTER						
Samples: Terbium-palladium alloy/Tb3Pd5 Holmium-palladium alloy/Ho3Pd5								
Instrument			Requested days	Allocated days	From	То		
D1B			2	2	13/07/2016	15/07/2016		
Abstract:								

In our recent work we have investigated the "R2Pd3" phase (R = rare earth) and found that it actually corresponds to the stoichiometry R3Pd5. This compound is formed by R = Sc, Y, Gd-Lu, including Yb; all of them crystallizing in the Pu3Pd5 prototype [oS32, Cmcm]. Two Wyckoff sites are available in the unit cell for the R atoms, while three crystallographic positions are occupied by Pd atoms.

Antiferromagnetic behavior has been observed for Tb and Ho compounds with two subsequent transitions (TN1 = 13.5 K and TN2 = 6.5 K for Tb3Pd5, TN1 = 7.2 K and TN2 = 4.2 K for Ho3Pd5). Effective paramagnetic moments of 9.64 and 10.60 μB for Tb3Pd5 and Ho3Pd5, respectively, are obtained from the Curie-Weiss law, with negative values of paramagnetic Curie temperature (-11 K for Tb3Pd5 and -4 K Ho3Pd5) indicating antiferromagnetic interaction. The isothermal magnetization measurements confirm the antiferromagnetic ordering of the two compounds. From our data we cannot distinguish whether the two R sublattices distinctly order at the two different TN, or if both are simultaneously involved at the two transitions. By neutron diffraction we plan to study the magnetic structures.

Report on Experiment 5-31-2459

Following the successful description of the new binary phases R_3Pd_5 as crystallizing in the Pu_3Pd_5 orthorhombic structure type with space group *Cmcm* [1], the aim of this neutron diffraction experiment was the determination of the magnetic structures of Tb_3Pd_5 and Ho_3Pd_5 .

For both compounds the magnetic and specific heat data had indicated that the magnetic ground state should be antiferromagnetic with a supposed independent ordering of the two R-sublattices found by R1 on the Wyckoff site 4c and R2 on 8e [1].

The temperature dependence of the neutron diffraction patterns (thermodiffractograms) was measured on D1B taking spectra for 5 min every 0.5 K between 1.5 K and 20 K for Tb₃Pd₅ and every 0.1 K between 1.5 K and 15 K for Ho₃Pd₅. Longer scans of about 30 min were additionally taken at 1.5 K, 6 K, and 8 K for R = Tb and at 1.5 K, 3.5 K, 5 K and 15 K for R = Ho. Figure 1a shows the thermodiffractogram of Ho₃Pd₅ with figure 1b displaying the temperature dependence of two symptomatic reflections. The magnetic structure and its temperature evolution was determined using magnetic symmetry analysis. A unique magnetic propagation vector $k = [1 \ 0 \ 0]$ is comprising both Ho-sublattices with, however, the Ho1-sublattice evolving strong magnetic order at $T_N = 7$ K, while the Ho2-sublattice orders much slower – apparently induced by the Ho1-sublattice – before it emerges as well strongly below 4 K. The magnetic structure sees ferromagnetic layers formed by Ho1 and Ho2 moments along the *a-c*-layers, coupled antiferromagnetically in *b*-direction

Figure 1. a) Thermodiffractogram of Ho₃Pd₅, b) T-dependence of two magnetic reflections.

Figure 2. a) Magnetic couplings within the a-c-plane, b) b-c-plane of Ho₃Pd₅.

The thermodiffractogram of Tb₃Pd₅ shows a very different behaviour, magnetic peaks created through different magnetic propagation vectors appear at different temperatures: $T_{N1} = 13$ K sees $k_1 = [1 0 \frac{1}{2}]$, $T_{N2} = 7$ K sees $k_2 = [0.76 0 0]$ and $T_{N3} = 6$ K sees $k_3 = [1 0 0]$. Opposite to Ho₃Pd₅ it is the Ho2-sublattice which becomes first ordered in Tb₃Pd₅ following exclusively k_1 down to base temperature. The Ho1-sublattice adopts first an incommensurate magnetic structure with k_2 before it transforms over a coexistence region to k_3 . Surprisingly the magnetic exchange interactions (Figure 4) acting in Tb₃Pd₅ are totally opposite to those found in Ho₃Pd₅ although the structural details of both compounds are nearly identical. Next nearest neighbour interactions being ferromagnetic in Ho₃Pd₅ become antiferromagnetic in Tb₃Pd₅ and vice versa. We are planning more detailed band structure calculations on these compounds and new additional neutron diffraction experiments on the Er₃Pd₅ compound having a different 4*f*-electronic charge distribution in order to tackle this strange anisotropy.

Figure 3. Thermodiffractogram of Tb₃Pd₅

Figure 4. b) Magnetic couplings within the a-c-plane, c) b-c-plane of Tb₃Pd₅.

[1] A. Provino et al., Cryst. Growth Des. 2016, 16, 6001