Experimental report

Proposal:	Proposal: 5-31-2486		Council: 4/2016			
Title:			of promising multiferroics: Co2MgTeO6, Co2ZnTeO6,			
Research ar	ea: Chemi					
This proposal	is a new pr	oposai				
Main proposer:		Maria RETUERTO M	IILLAN			
Experimental team:		Christopher R. ANDERSEN Maria RETUERTO MILLAN				
Local contacts:		Maria Teresa FERNANDEZ DIAZ				
ľ	Co2MgTeO Mn2MgTeO Co2ZnTeO6	6				
	Mn2ZnTeO					
Instrument		:	Requested days	Allocated days	From	То
			3	0		
D2B			3	2	06/06/2016	08/06/2016

several positions for the magnetic cations, which expands the degrees of freedom in the magnetic structure offering new possibilities for modifications and manipulations. It has three different magnetic transitions with different magnetic structures when the temperature is lowered below 26K. Also a strong anomaly in the dielectric constant is observed around 18K in zero magnetic field indicating the presence of an spontaneous polarization. Mn3TeO6 has a different crystallographic structure but very interesting magnetic properties due to an incommensurate magnetic structure below 23K. We have prepared the novel phases Co2MgTeO6, Co2ZnTeO6, Mn2MgTeO6 and Mn2ZnTeO6 and determined their structures by x-ray diffraction. Preliminary neutron diffraction measurements on Co2MgTeO6 show the appearance of magnetic peaks at low temperature. Therefore, this shows that, even in the presence of non-magnetic Mg and Te atoms, a long-range magnetic structure is established at low temperatures, for these promising new multiferroic phases. Co_3TeO_6 has been reported as a multiferroic material with a complex magnetic structure. It has a cryoliterelated structure (C2/c) and several positions for the magnetic cations, which expands the degrees of freedom in the magnetic structure offering new possibilities for modifications and manipulations. It has three different magnetic transitions with different magnetic structures, when the temperature is lowered below 26K. Also a strong anomaly in the dielectric constant is observed around 18K in zero magnetic field indicating the presence of an spontaneous polarization¹. Mn₃TeO₆ has a different crystal structure but very interesting magnetic properties due to an incommensurate magnetic structure below 23K2.

We have prepared the novel phases Co_2MgTeO_6 , Co_2ZnTeO_6 , Mn_2MgTeO_6 and Mn_2ZnTeO_6 and determined their structures by x-ray diffraction. Preliminary neutron diffraction measurements on Co₂MgTeO₆ show the appearance of magnetic peaks at low temperature. Therefore, this shows that, even in the presence of nonmagnetic Mg and Te atoms, a long range magnetic ordering is established at low temperatures, for these promising new multiferroic phases. In the D20 experiment, performed 6th to 8th of June, we have measured the thermal evolution of the magnetic structures of all the compounds prepared of the series. The measurements were carried out with a wavelength of $\lambda = 2.41$ Å and a take-off angle of 90°. 1-2 g of each samples were prepared in V cans. The samples were cooled, while making scans of 3 min. The samples were then measured for at least 2 hours at 2 K and then heated in steps of 2 K with 30 min per step. Finally a high temperature measurement above the magnetic phase transition was made for at least 2 hours. Unexplainable peaks at the same position for all our measurements indicate an impurity present in the instrument at the time we did the experiments. See figure 1, 2 and 3. The evolution of the NPD pattern at decreasing and increasing temperatures of Co_2MgTeO_6 was made. A magnetic phase transition has been registred at 30 K as seen in figure 4, which has been confirmed by magnetization measurements. The magnetic structure is believed to be a commensurate antifferomagnetic ordering with a propagation vector of $k = (0 \ 0 \ 0.5)$, which has been solved with preliminary neutron diffraction measurements at D2B given in figure 5.

In the case of $\text{Co}_2\text{ZnTeO}_6$ only one peak is present together with some scattering close to the nuclear peaks between 30° and 40°. This peak at 15° indicates long range magnetic ordering, but it has not been possible to solve the magnetic structure with this single peak. In the case of Mn₂MgTeO₆ and Mn₂ZnTeO₆, long range magnetic ordering happens below 12 K, which is indicated by intense peaks increasing as temperature is lowered. A magnetic long range ordering has been seen by susceptibility measurements too. The magnetic structure is believed to be an incommensurate magnetic ordering various propagation vectors have been proposed. One among others are the propagation vector k = (0.005 0.005 0.420), which is close to the one of Mn₃TeO₆, k = (0 0 0.4302(1)).

¹ H. Singh et al. arXiv:1309.6417 (2013); S. A. Ivanov et al. Mater. Res. Bull. 47, 63 (2012).

² S. A. Ivanov et al. Mater. Res. Bull. 46, 1870 (2011).

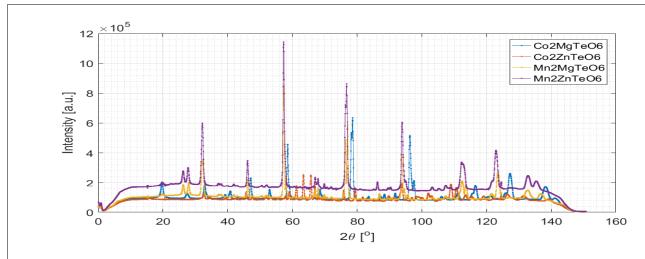
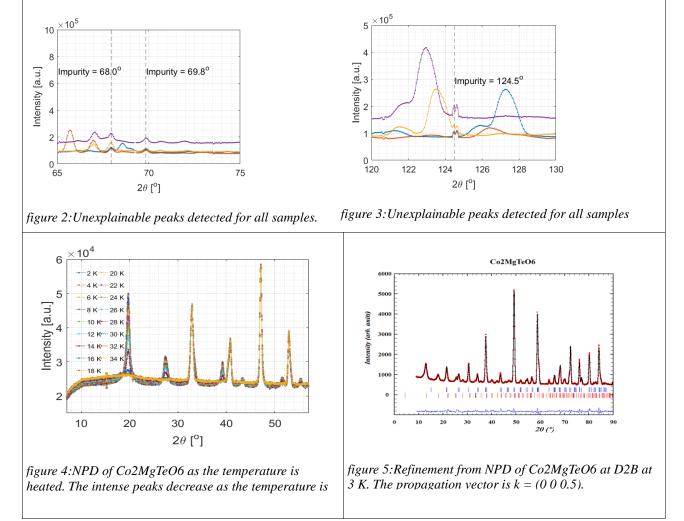



figure 1:Plot of all data. Unexplainable peaks were found for all measurements at all temperatures. This is believed to be an impurity present at the instrument at the time the measurements were made.

