Experimental report

Proposal:	5-31-2	574	Council: 4/2017			
Title:	Magnetic structure of the 4d honeycomb antiferromagnet MoSiP3O11					
Research area: Physics						
This proposal is a new proposal						
Main proposer	•	Alexander TSIRLIN				
Experimental team: Lei DING		Lei DING				
Local contacts: Clemens RITTER						
Samples: MoSiP3O11						
Instrument			Requested days	Allocated days	From	То
D2B			1	1	18/06/2018	19/06/2018
D20			1	1	23/05/2018	24/05/2018
Abstract:						

We propose to investigate crystal and magnetic structures of MoSiP3O11, a 4d honeycomb antiferromagnet that may potentially host exotic spin states with valence-bond-solid correlations. We will determine ordered magnetic moment on Mo3+ and assess its reduction with respect to the classical spin-only value. We will also explore the nature of magnetic order in this material, investigate underlying magnetic interactions, and analyze the role of the spin-orbit coupling. Our results will shed light on the scarcely investigated magnetism of Mo3+ and provide a useful reference for the ongoing research on honeycomb materials with 4d and 5d transition metals.

Experimental report on 5-31-2574

Magnetic structure of the 4d honeycomb antiferromagnet MoSiP₃O₁₁

Neutron diffraction on MoP₃SiO₁₁ has been measured at D2B (T = 1.5, 10, 100, 295 K) and D20 (T = 1.5 - 12 K). Above $T_N = 6.7$ K, the patterns could be refined in the $R\bar{3}c$ space group, which is higher in symmetry than C2/c proposed previously [1]. This observation led us to perform a high-resolution x-ray diffraction measurement (at ID22, ESRF) that confirmed the absence of a monoclinic distortion and thus revised the crystallographic symmetry of MoP₃SiO₁₁ as trigonal.

Below T_N , magnetic scattering with the propagation vector $\mathbf{k} = 0$ was observed. A subsequent refinement of the collinear antiferromagnetic model produced the size and direction of the Mo³⁺ magnetic moment. This magnetic structure is fully in line with the exchange couplings calculated *ab initio*.

The results of this study were published in [Phys. Rev. B 104, 094428 (2021)]. The paper was chosen as Editors' Suggestion.

[1] A. Leclaire and B. Raveau, J. Solid State Chem. 71, 283 (1987).

Figure 1. Rietveld refinement for the magnetic neutron scattering obtained by subtracting the 12 K data (above T_N) from the 1.5 K data (below T_N). The orange line is the fit with the covalent magnetic form factor calculated *ab initio*. The inset shows temperature dependence of the ordered magnetic moment and its empirical fit with $\mu = \mu_0 [1 - (T/T_N)^{\alpha}]^{\beta}$ where $T_N = 6.78$ K, $\alpha = 2.5$, $\beta = 0.29$, and $\mu_0 = 2.65 \mu_B$.