Experimental report

Proposal: 5	-31-2659			Council: 10/2018		
Title:	etermining the noncollinear magnetic structure in the chiral beta-Fe2SeO					
Research area: P	hysics					
This proposal is a n	ew proposal					
Main proposer:	Dmytro INOSOV					
Experimental te	am: Anton KULBAKOV	Anton KULBAKOV				
	Yevhen ONYKIIEN	IKO				
	Ryan MORROW					
Local contacts:	Stanislav SAVVIN	Stanislav SAVVIN				
	Vivian NASSIF					
Samples: CaBa(I	Mn2Fe2)O7					
Instrument		Requested days	Allocated days	From	То	
D2B		3	1	27/06/2019	28/06/2019	
D1B		3	2			
A b stres str						

Abstract:

beta-Fe2SeO is a novel magnetic compound that has been first synthesized and characterized only recently. It derives from the hypothetical "Fe3SeO" antiperovskite structure with vacancies on the metal site, whose ordering results in two structural modifications of Fe2SeO. The metastable alpha-phase is pseudo-tetragonal (space group Cmce), whereas the beta-phase is trigonal and chiral (space group P31, see Fig. 1). The Fe2+ ions in a distorted tetrahedral coordination form a complex frustrated magnetic sublattice that orders below TC = 105 K into a weakly ferromagnetic state, with a subsequent second transition to a presumably collinear antiferromagnetic state at TN = 79 K. These two transitions observed in magnetic susceptibility are reminiscent of those in hematite [2], but because of the lower crystal symmetry of beta-Fe2SeO, its order could represent a more complex noncollinear or non-coplanar spiral structure. As a result, this compound could combine pyroelectric and piezoelectric properties. Understanding the magnetic structure in the two ordered phases is the main purpose of our experiment.

The experiment was successfully conducted. The data are currently being analyzed.