Experimental report

Proposal:	Proposal: 5-31-2674		Council: 4/2019				
Title:	Crysta	l and magnetic structur	es of A-site manganites with B = Te, Ta and Nb with perovskite and corundumrelated				
Research area: Physics							
This proposal is a new proposal							
Main proposer:		Angel AREVALO L	OPEZ				
Experimental team:		Angel AREVALO LOPEZ					
		Cintli AGUILAR MA	LDONADO				
		Elena SOLANA MADRUGA					
Local contacts:		Clemens RITTER					
Samples:	Mn4Nb2O9	-II					
	Mn3TeO6-I	I					
Mn11Ta4O21							
Mn3-xCoxTeO6							
Instrument			Requested days	Allocated days	From	То	
D20			3	3	20/09/2019	23/09/2019	
Abstract:	s are intensis	rely studied materials	s they exhibit usef	ful chemical and n	hysical properties	Amonast these the u	se of high
ABO3 oxide	s are intensiv	ely studied materials a	is they exhibit usef	ful chemical and p	hysical properties.	Amongst these, the us	se of high

ABO3 oxides are intensively studied materials as they exhibit useful chemical and physical properties. Amongst these, the use of high pressure synthesis techniques has shown that the small Mn2+ cation can be located in the A-site with several structures in competition. This study is on three different structures with Mn2+ in the A-site. The goal is to determine their magnetic structures and to compare the different structural factors that rule over the magnetic interactions in these exotic materials.

<u>Crystal and magnetic structures of A-site manganites with B = Te, Ta and Nb with</u> perovskite and corundum related structures.

A. M. Arévalo-López, E. Solana-Madruga, C. Aguilar Maldonado, O. Mentré and J. P. Attfield.

ABO₃ oxides are intensively studied materials as they exhibit useful chemical and physical properties. Amongst these, the use of high pressure synthesis techniques has shown that the small Mn^{2+} cation can be located in the A-site with several structures in competition. For instance, the spintronic perovskite MnVO₃-II or the multiferroic MnTiO₃-II in the LiNbO₃-type. ^[1,2] More recently, Mn₃WO₆ has shown multiferroic properties along with an incommensurate magnetic order, therefore the study of the magnetic structures is important in order to understand the coupling between the different ferroic orders.^[3]

In this experiment, two high pressure and one ambient pressure A-site manganites with B = Te, Ta and Nb were proposed as potential multiferroics. Among them, the ambient pressure sample $Mn_{11}Ta_4O_{21}$ and the high pressure Mn_3TeO_6 had been previously registered and measured on the D1B experiment 5-31-2624. The collected data, detailed in the experimental report for the indicated experiment allowed the accurate determination of both nuclear and magnetic structures and their thermal evolution. The results for Mn_3TeO_6 were reported in *Chem. Comm.* 2019, **55**, 14470-14473 (doi: 10.1039/c9cc07733b) and those for $Mn_{11}Ta_4O_{21}$ are currently under review in *Inorganic Chemistry*.

About 70 mg of Mn_3NbO_6 were measured on D20 using a 3 mm V-foil can combining several high pressure products together. Long scans were collected at 5 and 80 K using $\lambda = 2.41$ Å. Additional short scans were taken every 0.1 K at intermediate temperatures. The resulting features of a complex modulated structure motivated the collection of additional 100 K pattern in the highest resolution mode, using the 90° take off angle and $\lambda = 1.54$ Å. The results, in combination with synchrotron data, allowed the complete structural and magnetic characterisation of this sample, with a complex magnetic thermal evolution (Fig.1). The publication of these results is currently under preparation.

Additional related samples with general formula $Mn_{3-x}Co_xTeO_6$, from the accepted proposal 5-31-2731, were registered for this experiment and different temperature data sets were collected for each of them using $\lambda = 2.41$ Å and 42° take off angle as detailed below. In all cases, small amounts of sample between 50 and 120 mg combining several high pressure products together were scanned using a 3 mm V-foil can.

- x = 0.5: 2 h scans collected at 1.5, 35 and 100 K with additional short scans collected every 0.1 K between 1.5 and 35 K.
- x = 1: 1.5 h scans were collected at 1.5 and 50 K and additional short scans every 0.1 K.
- x = 1.5: 2.5 h scans were collected at 1.5, 40 and 80 K with additional short scans taken every 0.1 K.
- x = 2.5: 2 h scans were collected at 1.5, 35 and 90 K with additional short scans every 0.1 K.
- x = 3: 1 h and 45 min scans collected at 1.5, 40 and 80 K with additional short scans every 0.1 K.

The results confirm that the $Mn_{3-x}Co_xTeO_6$ solid solution shows a structural evolution from the double perovskite structure of $Mn_3TeO_6^{[4]}$ (x < 1.5) to the Ni₃TeO₆ related superstructure of Mn_3NbO_6 (for x > 1.5). x = 1.5 shows a phase coexistence between both polymorphs. The x = 2 member of the series was left to be measured during experiment 5-31-2731. The magnetic structures of the DPv polymorphs show a coherent evolution from the AFM k = [$\frac{1}{2}0\frac{1}{2}$] of $Mn_3TeO_6^{[4]}$ to k = [000] with spins confined to the ac plane in all cases (Fig. 2). Among the ordered corundum related structures, complex magnetic behaviours are observed, including incommensurate T-dependent propagation vectors similar to those observed for Mn_3NbO_6 in Fig. 1.

Fig. 1. 2D plot showing the complex thermal evolution of the Mn₃NbO₆ ordered corundum related high pressure phase.

Fig. 2. Magnetic structures of the high pressure double perovskite polymorphs of Mn_{3-x}Co_xTeO₆.

¹ M. Markkula, et al. Phys. Rev. B. 84, 094450, 2011.

 ² A. M. Arevalo-Lopez and J. P. Attfield. *Phys. Rev. B.* 88, 104416, 2013.
³ M-R. Li *et al. Nat. Comm.* 8, 2037, 2017.

⁴ A. M. Arevalo-Lopez et al. Chem. Comm. 55, 14470-14473, 2019.