## **Experimental report**

| Proposal:                       | Proposal: 5-31-2679 |                                                                                 | <b>Council:</b> 4/2019 |                |            |            |  |
|---------------------------------|---------------------|---------------------------------------------------------------------------------|------------------------|----------------|------------|------------|--|
| Title:                          | Charge              | Charge and magnetic ordering in GaV2O5 and the new lacunar spinel oxide GaV4O8. |                        |                |            |            |  |
| Research area: Materials        |                     |                                                                                 |                        |                |            |            |  |
| This proposal is a new proposal |                     |                                                                                 |                        |                |            |            |  |
| Main proposer:                  |                     | Angel AREVALO LOPEZ                                                             |                        |                |            |            |  |
| Experimental team:              |                     | Angel AREVALO LOPEZ                                                             |                        |                |            |            |  |
|                                 |                     | Cintli AGUILAR MA                                                               | LDONADO                |                |            |            |  |
| Local contacts:                 |                     | Clemens RITTER                                                                  |                        |                |            |            |  |
| Samples:                        | GaV2O5<br>GaV4O8    |                                                                                 |                        |                |            |            |  |
| Instrument                      | t                   |                                                                                 | Requested days         | Allocated days | From       | То         |  |
| D1B                             |                     |                                                                                 | 2                      | 2              | 12/10/2019 | 14/10/2019 |  |
| Abstract:                       |                     |                                                                                 |                        |                |            |            |  |

Vanadium oxides have been intriguing substances in solid state physics due to their behavior as strongly correlated electron systems. We have discover a new mixed valent vanadium oxide (GaV4O8) with a lacunar spinel structure. We have also prepared the non-studied mixed valent GaV2O5. Neutron diffraction is needed in order to elucidate their magnetic structures and possible low temperature charge ordering transitions.

Charge and magnetic ordering in GaV<sub>2</sub>O<sub>5</sub> and the new lacunar spinel oxides GaV<sub>4</sub>O<sub>8</sub>

Vanadium oxides have been intriguing substances in solid state physics due to their behavior as strongly correlated electron systems. Even simple vanadium oxides as  $VO_2$  or  $V_2O_3$  show metal-insulator transition (MIT). Another important characteristic of these oxides is the presence of mixed valence statutes which may be accompanied by charge ordering along with MIT as in  $V_4O_7$ .

The ternary system Ga-V-O was reported back on 1981 where it was mentioned the GaV<sub>2</sub>O<sub>5</sub> compound<sup>i</sup> purely as the structural characterization, recently on 2018 it has also been reported the GaV<sub>2</sub>O<sub>4</sub> spinel<sup>ii</sup> and we have discovered a new GaV4O8 oxide. This novel GaV<sub>4</sub>O<sub>8</sub> presents a hexagonal structure  $P6_{3mc}$  with a = 5.69474(4) Å and c = 9.38631(3) Å. The magnetic properties of this compound reveal an antiferromagnetic transition at T<sub>N</sub>= 40 K with  $\theta$  = -41.94 K,  $\mu_{eff}$  = 2.09  $\mu_B$  per V which as in the GaV<sub>2</sub>O<sub>5</sub> compound, correspond to a mixed valence state, it also presents a second transition at T=78K which from this neutron diffraction measurement was found to be a V<sub>3</sub>O<sub>5</sub> impurity. The k vector for this magnetic structure is surprisingly 1/4 1/4 0 with a *Pac* magnetic space group (7.27). On the other side, GaV<sub>2</sub>O<sub>5</sub> measurements reveal an absence of magnetic Bragg peaks down to 5 K, and it is probably a spin glass.

About 1 g of GaV<sub>4</sub>O<sub>8</sub> and GaV<sub>2</sub>O<sub>5</sub> were measured on D1B using a 6 mm V-foil can. Long scans were collected at 5 and 80 K using  $\lambda = 2.52$  Å. The results, in combination with synchrotron data, allowed the complete structural and magnetic characterization of these samples. The publication of these results is currently under preparation.



Figure 1. NPD for GaV<sub>4</sub>O<sub>8</sub> at 80, 50 and 1.5 K (green, blue, red) collected in D1B. Magnetic structure for GaV<sub>4</sub>O<sub>8</sub> (*Pac* magnetic space group). Magnetic susceptibility for GaV<sub>4</sub>O<sub>8</sub>.

<sup>&</sup>lt;sup>i</sup> Cros et al., Acta Crystallographica Section B, 1980, vol. 36, no 10, p. 2210-2213.

<sup>&</sup>lt;sup>ii</sup> Browne, A. J.; Lithgow, C.; Kimber, S. A. J.; Attfield, J. P. Inorg. Chem. 2018, 57 (5), 2815–2822.