Experimental report 24/05/2022

Abstract:

Magnetotactic bacteria are microorganisms that can align in and navigate along geomagnetic field lines. This is due to the fact that magnetotactic bacteria biomineralize magnetite nanoparticles, called magnetosomes, arranged in a chain. The chain configuration is strongly affected by the magnetic anisotropy of the magnetosome. In this proposal we will work with two species that synthesize magnetosomes with different morphology: Magnetospirillum magneticum, which synthesize slightly elongated cubooctahedral magnetosomes arrange in 3-5 subchains, and Magnetovibrio blakemorei, which produce hexaoctahedral shaped (35×35×53 nm) magnetosomes arranged in a single chain. Such different morphologies lead to important changes in the vectorial distribution of the magnetic moments. In this experiment we plan to perform spin-resolved small angle neutron scattering at the SANS instrument D33 on isolated magnetosomes and the bacterial colloids of the two different bacterial species. It will allow us to reveal the chain arrangement in these bacterial species, which will help to transfer the knowledge to other magnetotactic strains.

Experimental Report 5-32-887

The main outcome of this experiment has been published in [1]. A summary of the information concerning SANS experiments at D33 is summarised briefly in Figures 1, 2 and 3.

Fig. 1. Abstract of results gathered in magnetosome chain of magnetotactic bacteria.

Fig. 2 Magnetic state of the colloidal dispersion of bacteria. (a) Magnetization curve of the colloid. The field axis is in logarithmic scale to magnify the low-field region. The sketches display the two-step magnetization process. The experimental data marked with arrows correspond to the points the low-held region. I he swetches display the two-step magnetization process. The experimental data marked with arrows correspond to the points
measured by SANS/SAXS ($\mu_0H = 0$ mT; 2 mT; and 1 T. (b) Schematic represent _{ss}(q) determined by polarized SANS. The lines are the corresponding fits by an indirect Fourier transform. (e) Pair distance distribution functerms L tions P(r) determined by an indirect Fourier transform of the 1D scattering intensities from (d). The black line is the P(r) of a homogeneous sphere with diameter $D_{SAS} = 48$ nm. The distribution function determined by SAXS is offset by arbitrary scaling factors.

Fig. 2. Main SANS results and analysis by IFT.

Fig. 5 Equilibrium configuration of the magnetosome chain. (a) Schematic representation of two competing mechanisms: magnetic force pushing to align magnetosome magnetic moments along the stray field lines from neighboring particles, and lipid/protein-based mechanism modeled as an elastic recovery force acting perpendicularly to the chain axis, where the chain axis is the [111] crystallographic direction along which magnetosomes align, as highlighted in the figure. (b) Experimental reconstructions obtained from ECT imaging of the magnetosome chains shown in Fig. 1a and b. A zoom-in of the first magnetosome chain reconstruction highlights the deviation from a straight line. (c) Two stable solutions for the chain patterns obtained as explained in the text. A potential filament has been drawn as a guide for the eye. A video of the experimental reconstruction of the chain on the left (chain (a) in Fig. 1) together with the corresponding simulated chain viewed from different perspectives can be found in the ESI (movie S3+). (d) Schematic representation of the magnetic dipoles and the three independent variables used in the simulation: radial (p) and azimuthal (p) coordinates for the magnetosome positions, and azimuthal orientation (φ) of the magnetic dipoles. θ is the polar angle of the magnetic dipoles, fixed to 20°.

Fig. 3. (Labelled in article as Fig. 5). Configuration of magnetosome chain.

References

[1] I. Orue et al., "Configuration of the magnetosome chain: a natural magnetic nanoarchitecture." *Nanoscale* 10,

7407 (2018).