Experimental report

Proposal:	5-32-909		Council: 4/2020				
Title:	Persistent Magnetic Correlations above TN in the Frustrated FCC Lattices Ba2MnMO6 (M=W, Te)						
Research area: Physics							
This proposal is a resubmission of 5-32-902							
Main proposer	:	Edmund CUSSEN					
Experimental team:		Lucile MANGIN-THRO					
		Otto MUSTONEN					
Local contacts:		Lucile MANGIN-THRO					
Samples: Ba2MnWO6 Ba2MnTeO6							
Instrument		Requested days	Allocated days	From	То		
D7			5	5	14/02/2021	19/02/2021	
Abstract:							

We have used a combination of magnetic susceptibility, neutron scattering and muon spin relaxation measurements to examine the magnetic properties of the frustrated lattices of the cubic double perovskites Ba2MnMO6 (M=W, Te) These compound maintain Fm-3m symmetry to 2 K, as identified using neutron diffraction data, with Mn/M cations ordered in a rock salt manner across the octahedral sites of the perovskite structure. The S=5/2, L=0 Mn2+ cation introduces no orbital anisotropy into the system and makes them ideal candidates to test ideas of frustration. Muon spin relaxation and inelastic neutron scattering measurements reveal the presence of a short-range correlated magnetic state above TN in both compounds. We will use D7 to measure diffuse magnetic scattering in order to characterize the short-range corelated state, and investigate how it is linked to the magnetically ordered state.

Persistent Magnetic Correlations above T_N in the Frustrated FCC Lattices Ba₂MnMO₆ (M=W, Te)

Proposal no: 5-32-909 Instrument: D7, 5 days of beamtime Experiment team: Edmund Cussen, Otto Mustonen, Helen Walker, Charlotte Pughe Local contact: Lucile Mangin-Thro

Ba₂MnTeO₆ and Ba₂MnWO₆ are isostructural Mn²⁺ double perovskites with the cubic space group *Fm*-3*m* [1–4]. The magnetic Mn²⁺ cation forms a fcc lattice, and these compounds are essentially ideal realisations of the S = 5/2 fcc Heisenberg anttiferromagnet model. Despite being diamagnetic, the Te⁶⁺ 4d¹⁰ and the W⁶⁺ 5d⁰ cations play a significant role on the magnetic interactions in these compounds. Ba₂MnTeO₆ has a dominant *J*₁ interaction leading to a Type I antiferromagnetic structure, while *J*₁ and *J*₂ are almost equally strong in Ba₂MnWO₆ leading to a Type II antiferromagnetic structure. This difference is due to an orbital hybridization effect on the Te⁶⁺ and W⁶⁺, which allow different extended superexchange pathways in the material [5].

We have previously extensively characterised the ground state properties of Ba_2MnTeO_6 and Ba_2MnWO_6 [3,4]. However, we also observed evidence of a short-range correlated magnetic state above TN in both compounds. In muon experiments, the full paramagnetic fraction is not recovered at T_N . Instead, the paramagnetic fraction increased gradually after T_N suggesting the formation of a short-range correlated state. Hints of this state were also observed in inelastic neutron scattering measurements.

In order to characterise the proposed short-range correlated magnetic states above T_N in Ba₂MnTeO₆ and Ba₂MnWO₆, we performed a polarised neutron experiment on the D7 instrument at ILL. We extracted the diffuse magnetic scattering at a number of temperatures using XYZ polarisation analysis. The data was analysed using Spinvert [6].

Figure 1. (a) The double perovskite structure of Ba₂MnTeO₆ and Ba₂MnWO₆ and the J_1 and J_2 interactions of the fcc Heisenberg model. (b) The Type I magnetic structure of Ba₂MnTeO₆. (c) The Type II magnetic structure of Ba₂MnWO₆. (d) Paramagnetic fraction of Ba₂MnWO₆ from muon experiments. The full paramagnetic fraction is not recovered at $T_N = 8$ K, but at gradually at higher temperatures. The panels are from refs. [3,4].

Figure 2. (a) Diffuse magnetic scattering of Ba_2MnTeO_6 at different temperatures and the corresponding Spinvert fits. (b) The spin-spin correlations obtained from Spinvert fits.

The diffuse magnetic scattering of Ba₂MnTeO₆ at a number of temperatures is shown in Figure 2. We observe a broad peak at $|Q| \sim 0.78$ Å⁻¹, which is best visible in the data at 30 K. This is 10 K above $T_N = 20$ K. The main magnetic peak observed in neutron diffraction in the ordered state is at |Q| = 0.78, which suggests that the short-range correlated state above T_N evolves out of the magnetic order below T_N . Another broad peak is observed at $|Q| \sim 1.8$ Å⁻¹. This is likely related to two magnetic peaks observed in the ordered state at |Q| = 1.71 and 1.83 Å⁻¹. Significant diffuse magnetic scattering was observed up to 150 K, which is quite high in comparison to $T_N = 20$ K.

The spin-spin correlations in Ba₂MnTeO₆ extracted from Spinvert fits are shown in Figure 2(b). In the magnetically ordered state, 2/3 of the nearest-neighbor J_1 spins couple antiferromagnetically, while all next-nearest neighbour J_2 spins couple ferromagnetically. Our D7 experiment shows that the short-range order above T_N is closely related to the magnetic order in Ba₂MnTeO₆: J_1 spin-spin correlations are strongly antiferromagnetic, while the J_2 correlations are ferromagnetic. The spin-spin correlations get weaker as temperature is increased, but are correlations persists up to at least 150 K.

The diffuse magnetic scattering for Ba₂MnWO₆ is shown in Figure 3. A broad peak in the magnetic scattering is observed at $|Q| \sim 0.68 \text{ Å}^{-1}$. This is related to the main magnetic Bragg peak observed at $|Q| = 0.66 \text{ Å}^{-1}$ in the magnetically ordered state. The position of the main diffuse peak in Ba₂MnWO₆ is shifted in comparison to Ba₂MnTeO₆, which is understandable, as the magnetic structures of these two compounds are also different. Diffuse magnetic scattering was observed up to 100 K, which is significantly above $T_N = 8 \text{ K}$ for Ba₂MnWO₆.

Figure 3. (a) Diffuse magnetic scattering of Ba_2MnWO_6 at different temperatures and the corresponding Spinvert fits. (b) The spin-spin correlations obtained from Spinvert fits.

The spin-spin correlations in Ba₂MnWO₆ extracted from Spinvert fits are shown in Figure 2(b). In the magnetically ordered state, the spin-spin correlation for the nearest-neighbor J_1 spins is 0, as there are an equal number of ferro- and antiferromagnetically coupled spins. In contract, all next-nearest-neighbor J_2 spins couple antiferromagnetically. The spin-spin correlations in the short-range magnetic state in Ba₂MnWO₆ are related to the magnetic order below T_N , although the J_1 correlation is antiferromagnetic instead of 0. The spin-spin correlation for J2 is strong and antiferromagnetic as expected. The antiferromagnetic J_1 spin-spin correlations can be understood in terms of the magnetic exchange constants obtained from inelastic neutron scattering measurements below T_N . This revealed the J_1 interaction almost equal to J_2 , which explains the presence of antiferromagnetic J_1 spin-spin correlations above T_N .

Our D7 experiment was a success and we would like to give special thanks to our local contact Lucile Mangin-Thro, who ran the experiment for us due to the COVID-19 pandemic. We were able to show that the short-range magnetic states in Ba_2MnTeO_6 and Ba_2MnWO_6 persist to very high temperatures in comparison to T_N , and that they are related to the magnetic order below T_N . We plan to write a paper based on this experiment in the near future.

- [1] L. Wulff, B. Wedel, and H. Müller-Buschbaum, Zeitschrift Für Naturforsch. **53 b**, 49 (1998).
- [2] A. K. Azad, S. A. Ivanov, S.-G. Eriksson, J. Eriksen, H. Rundlöf, R. Mathieu, and P. Svedlindh, Mater. Res. Bull. 36, 2215 (2001).
- [3] H. Mutch, O. Mustonen, H. C. Walker, P. J. Baker, G. B. G. Stenning, F. C. Coomer, and E. J. Cussen, Phys. Rev. Mater. 4, 014408 (2020).
- [4] O. H. J. Mustonen, C. E. Pughe, H. C. Walker, H. M. Mutch, G. B. G. Stenning, F. C. Coomer, and E. J. Cussen, Chem. Mater. 32, 7070 (2020).
- [5] M. Zhu, D. Do, C. R. Dela Cruz, Z. Dun, H. D. Zhou, S. D. Mahanti, and X. Ke, Phys. Rev. Lett. 113, 076406 (2014).
- [6] J. A. M. Paddison, J. Ross Stewart, and A. L. Goodwin, J. Phys. Condens. Matter 25, 454220 (2013).