

# Experimental report

21/05/2024

**Proposal:** 5-41-1188

**Council:** 10/2022

**Title:** Exploring the magnetic phase diagram of the chiral antiferromagnet  $[\text{NH}_4][\text{Mn}(\text{HCOO})_3]$  at low fields

**Research area:** Physics

This proposal is a resubmission of 5-41-1147

**Main proposer:** MIGUEL PARDO SAINZ

**Experimental team:** Francisco RUBIO

Javier CAMPO RUIZ

MIGUEL PARDO SAINZ

**Local contacts:** Jose Alberto RODRIGUEZ VELAMAZAN

Oscar Ramon FABELO ROSA

**Samples:**  $[\text{NH}_4][\text{Mn}(\text{HCOO})_3]$

| Instrument    | Requested days | Allocated days | From       | To         |
|---------------|----------------|----------------|------------|------------|
| ORIENTEXPRESS | 1              | 2              | 29/05/2023 | 30/05/2023 |
|               |                |                | 28/09/2023 | 29/09/2023 |
| D9            | 7              | 3              | 22/05/2023 | 25/05/2023 |
| D3            | 4              | 4              | 26/05/2023 | 30/05/2023 |
| D10           | 7              | 3              | 20/06/2023 | 21/06/2023 |
|               |                |                | 29/09/2023 | 01/10/2023 |

## Abstract:

The existence of the Chiral Soliton Lattice (CSL) in magnets has also been confirmed in  $\text{Ba}_2\text{CuGeO}_7$ ,  $\text{CuB}_2\text{O}_4$ ,  $\text{NdFe}_3(11\text{BO}_3)_4$ , and  $\text{Yb}(\text{Ni}_{1-x}\text{Cu}_x)_3\text{Al}_9$ . Among these inorganic examples,  $\text{Ba}_2\text{CuGeO}_7$  and  $\text{NdFe}_3(11\text{BO}_3)_4$  accommodate the antiferromagnetic CSL (ACSL), where the staggered moments (instead of local moment) rotate with a period along the helical axis.

However Inoue et al. reported the synthesis of a molecule-based chiral magnetic compound,  $[\text{NH}_4][\text{Mn}(\text{HCOO})_3]$  (space group P6322), optically transparent, that apparently could host a ACSL.

However, the phase diagram of  $[\text{NH}_4][\text{Mn}(\text{HCOO})_3]$  could also be described in base of a simpler model consisting of an AF magnetic state at low fields and a spin flop transition to a conical region.

In order to discern between these two hypotheses, we propose to use single crystal neutron diffraction to determine the magnetic structure in each region of the phase diagram for the 2 different orientations of the magnetic field (parallel and perpendicular) respect to the c-axis in  $[\text{NH}_4][\text{Mn}(\text{HCOO})_3]$ .

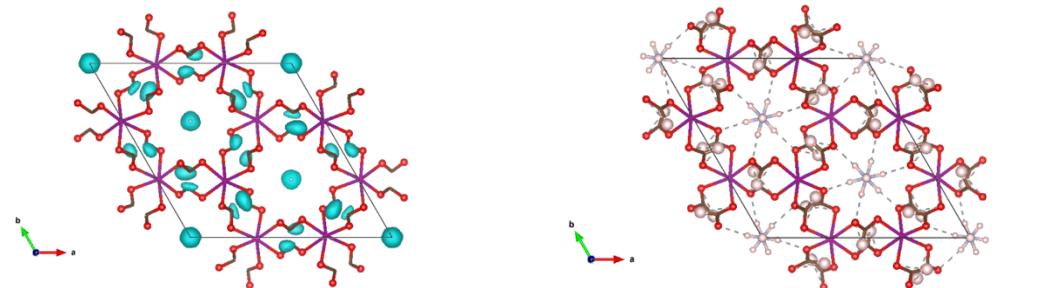
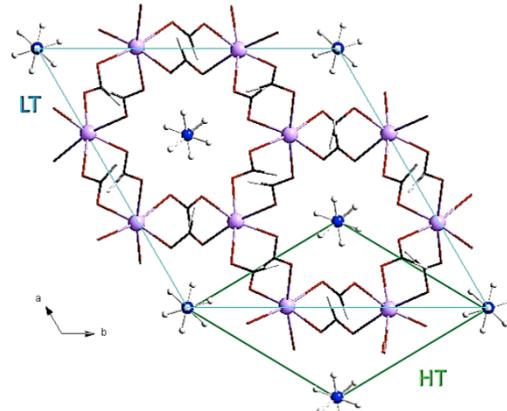
## Report of experiments 5-41-1188:

Title: Exploring the magnetic phase diagram of  $AMn(HCOO)_3$  ( $A = NH_4, Cs$ )

$[NH_4][Mn(HCOO)_3]$ :

Single crystal neutron diffraction:

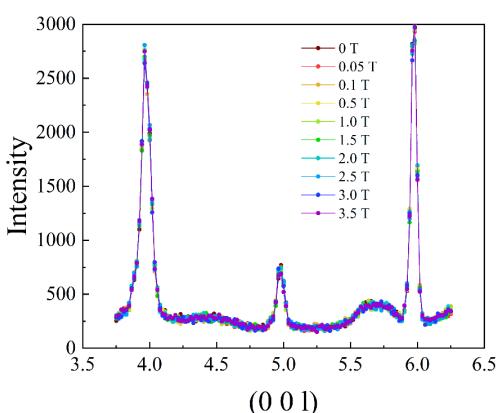
This experiment was performed in ILL (Grenoble, France) at D9 from 22/05/23 to 26/05/23. Two different crystals were previously oriented using Orient-Express so that the magnetic field was parallel or perpendicular to the c-axis. Then the crystals were glued to an Al pin with X60 glue and placed inside a 6T-CNRS (S20) cryomagnet. Several measurements with a neutron wavelength  $\lambda = 0.84 \text{ \AA}$  were performed until  $\sin \theta / \lambda = 0.3 \text{ \AA}^{-1}$ :



- 1<sup>st</sup> crystal:  $\vec{B} \parallel c$ . 93 reflections at 10 K, 0 T and 2 K, 0, 0.05, 0.1, 1, 3, 6 T.
- 2<sup>nd</sup> crystal:  $\vec{B} \perp c$ . 121 reflections at 10 K, 0 T and 2 K, 0, 0.05, 0.1, 1, 3 T. Q-scans at 2 K in  $(00l)$ ,  $l$ : 3.75-6.25 at 0, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3, 3.5 T.

The cell parameters were obtained from the refinement of the UB matrix at high and low temperature, as a phase transition corresponding to the ordering of the  $NH_4$  at  $T = 254 \text{ K}$  was already reported in [9].

- RT (SG P6<sub>3</sub>22):  
 $a = b = 7.36 \text{ \AA}$ ;  $c = 8.47 \text{ \AA}$ ;  
 $\alpha = \beta = 90^\circ$ ;  $\gamma = 120^\circ$
- Low-T (SG P6<sub>3</sub>):  
 $a = b = 12.60 \text{ \AA}$ ;  $c = 8.48 \text{ \AA}$ ;  
 $\alpha = \beta = 90^\circ$ ;  $\gamma = 120^\circ$

10 K, 0 T:


The reflections of both crystals were combined into 128 independent ones, and a fit was performed using isotropic DW factors and assuming the starting positions of the H atoms from the Fourier map.



Left: Crystal structure of  $[NH_4][Mn(HCOO)_3]$  w/o H atoms. The blue volumes represent the missing density from the Fourier maps, from which the position of the H atoms is deduced.  
Right: Crystal structure of  $[NH_4][Mn(HCOO)_3]$  obtained from the refinement at 10 K, 0 T.

Nuclear structure parameters of  $[\text{NH}_4][\text{Mn}(\text{HCOO})_3]$ :

| Temperature (K)                                | 10                          |
|------------------------------------------------|-----------------------------|
| Space group                                    | $\text{P}6_3$               |
| $a = b$ (Å)                                    | 12.60                       |
| $c$ (Å)                                        | 8.48                        |
| $\alpha = \beta$ (°)                           | 90                          |
| $\gamma$ (°)                                   | 120                         |
| $R_{\text{Bragg}}$                             | 2.22                        |
| Mn1 6c (x,y,z)                                 | 0.345(7), 0.329(7), 0.61(1) |
| O1 6c (x,y,z)                                  | 0.427(3), 0.262(3), 0.46(2) |
| O2 6c (x,y,z)                                  | 0.437(3), 0.158(3), 0.23(2) |
| O3 6c (x,y,z)                                  | 0.408(3), 0.491(3), 0.44(2) |
| O4 6c (x,y,z)                                  | 0.499(3), 0.605(3), 0.23(2) |
| O5 6c (x,y,z)                                  | 0.167(3), 0.228(3), 0.45(2) |
| O6 6c (x,y,z)                                  | 0.062(4), 0.242(3), 0.25(2) |
| C1 6c (x,y,z)                                  | 0.378(3), 0.193(3), 0.33(2) |
| H1 6c (x,y,z)                                  | 0.304(6), 0.174(6), 0.31(2) |
| C2 6c (x,y,z)                                  | 0.477(3), 0.514(3), 0.33(2) |
| H2 6c (x,y,z)                                  | 0.498(7), 0.460(6), 0.32(2) |
| C3 6c (x,y,z)                                  | 0.133(3), 0.284(3), 0.37(1) |
| H3 6c (x,y,z)                                  | 0.157(4), 0.382(5), 0.38(1) |
| N1 2b (1/3,2/3,z)                              | 2/3, 1/3, 0.56(2)           |
| H11 6c (x,y,z)                                 | 0.571(4), 0.296(3), 0.51(2) |
| H12 2b (1/3,2/3,z)                             | 2/3, 1/3, 0.69(2)           |
| N2 2b (1/3,2/3,z)                              | 1/3, 2/3, 0.55(2)           |
| H21 6c (x,y,z)                                 | 0.360(4), 0.607(4), 0.52(2) |
| H22 2b (1/3,2/3,z)                             | 1/3, 2/3, 0.64(2)           |
| N3 2a (0,0,z)                                  | 0, 0, 0.16(2)               |
| H31 6c (x,y,z)                                 | 0.019(6), 0.088(6), 0.20(1) |
| H32 2a (0,0,z)                                 | 0, 0, 0.04(2)               |
| $U_{\text{iso}, \text{Mn}}$ (Å <sup>2</sup> )  | 0(1)                        |
| $U_{\text{iso}, \text{O}}$ (Å <sup>2</sup> )   | 2.0(4)                      |
| $U_{\text{iso}, \text{C}}$ (Å <sup>2</sup> )   | 0.3(5)                      |
| $U_{\text{iso}, \text{H}}$ (Å <sup>2</sup> )   | 2(1)                        |
| $U_{\text{iso}, \text{N}}$ (Å <sup>2</sup> )   | 1.4(8)                      |
| $U_{\text{iso}, \text{HX1}}$ (Å <sup>2</sup> ) | 1.9(8)                      |
| $U_{\text{iso}, \text{HX2}}$ (Å <sup>2</sup> ) | 3(1)                        |



## Q-scans:

Q-scans were measured on the 2<sup>nd</sup> crystal ( $\vec{B} \perp c$ ) at 2 K. The scans were performed around the (00l) reflection with  $l$ : 3.75-6.25 at 0, 0.05, 0.1, 0.5, 1, 1.5, 2, 2.5, 3 and 3.5 T.

No evidence of a propagation vector different from (0,0,0) was observed, which suggests either a very large period of the soliton lattice or that the magnetic behavior corresponds just to a spin-flop.

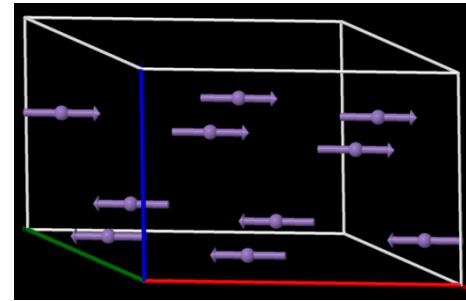
2 K, 0 T:

The reflections of both crystals were combined into 128 independent ones, and a fit of the magnetic structure was performed, with the nuclear structure fixed by the refined model at 10 K, 0 T. The symmetry of this magnetic phase is described by the irreducible representation theory, which tells us that the magnetic representation for the Mn atom in position 6c for the space group P6<sub>3</sub> and propagation vector  $\vec{k} = (0, 0, 0)$  is:

$$\Gamma_{6c} = 3m\Gamma_1(1) + 3m\Gamma_2(1) + 3m\Gamma_3\Gamma_5(2) + 3m\Gamma_4\Gamma_6(2)$$

After a systematic try and error, the best refinement was obtained for the irrep 3m $\Gamma_3\Gamma_5$ , which corresponds to the magnetic space group (MSG) P2<sub>1</sub> (# 4.7), as also reported in [9]. In this magnetic structure, the Mn magnetic moments form FM layers in the ab-plane, which are in turn coupled AFM along the c-axis.

Although the magnetic moments direction is not restricted by symmetry, the results of the refinement indicate a moment of  $\mu_{\text{Mn}} = 4.2(1) \mu_{\text{B}}$  along the a-axis, and a negligible contribution along the b and c-axes.


2 K,  $\vec{B} \parallel c$ : 1<sup>st</sup> crystal (93 reflec., 68 indep.):

The data (68 independent reflections from the 1<sup>st</sup> crystal) were fitted using the MSG P2<sub>1</sub> (# 4.7) for each applied field. Only the magnetic structure was refined, with the nuclear structure fixed by the refined model at 10 K, 0 T. The results are shown in the following table:

2 K,  $\vec{B} \perp c$ : 2<sup>nd</sup> crystal (121 reflec., 83 indep.):

The data (83 independent reflections from the 2<sup>nd</sup> crystal) were fitted using the MSG P2<sub>1</sub> (# 4.7) for each applied field ( $\vec{B} \parallel (3\ 0\ 0)$ ). Only the magnetic structure was refined, with the nuclear structure fixed by the refined model at 10 K, 0 T. The results are:

| B (T)//c | $\mu_{\text{Mn}} (\mu_{\text{B}})$ | $R_{\text{Bragg}}$ |
|----------|------------------------------------|--------------------|
| 0        | (4.2(1), 0, 0)                     | 7.17               |
| 0.05     | (3.4(1), 0, 1.4(3))                | 6.72               |
| 0.1      | (3.0(3), 0, 0(7))                  | 14.8               |
| 1        | (3.2(2), 0, 1.2(5))                | 7.21               |
| 3        | (3.2(2), 0, 1.4(3))                | 6.90               |
| 6        | (2.8(2), 0, 2.1(3))                | 8.34               |



Magnetic structure of  $[\text{NH}_4][\text{Mn}(\text{HCOO})_3]$  obtained from the refinement at 2 K, 0 T.

| B (T) $\perp c$ | $\mu_{\text{Mn}} (\mu_{\text{B}})$ | $R_{\text{Bragg}}$ |
|-----------------|------------------------------------|--------------------|
| 0               | (4.2(1), 0, 0)                     | 5.42               |
| 0.05            | (4.9(2), 5.4(2), 0)                | 5.21               |
| 0.1             | (5.1(2), 5.0(3), 0)                | 5.33               |
| 1               | (4.7(3), 5.4(2), 0)                | 5.65               |
| 3               | (5.2(2), 4.9(3), 0)                | 5.43               |