Proposal: 5-41-877		77	Council: 4/2016				
Title:	Magne	Magnetic structure of UnRhIn $3n+2$ (n = 1, 2) compounds					
Research area: Physics							
This proposal is a continuation of 5-41-808							
Main proposer:		Attila BARTHA					
Experimental team:		Milan KLICPERA					
Local contacts:		Bachir OULADDIAF					
Samples: U2 UR	RhIn8 hIn5						
Instrument			Requested days	Allocated days	From	То	
D10			8	4	16/11/2016	21/11/2016	
Abstract:							

The recently discovered compound U2RhIn8 belongs to the family with chemical composition RnTmIn3n+2m, where R is a lanthanide or actinide and T a transition element. The materials grow with a tetragonal unit cell that can be viewed as n-layers of RIn3 stacked sequentially along the c-axis with m-layers of TIn2. This layered structure allows investigating the influence of stacking on the magnetic and superconducting properties within a certain family. With U2RhIn8 and URhIn5 we can study the effect of exchanging the localized 4f-electrons from the Ce-analogous with the more delocalized 5f-electrons. The cubic compound UIn3 orders antiferromagnetically at TN= 88K. U2RhIn8 and URhIn5 order at high temperatures, TN= 117K and 98K, respectively. The propagation vector of UIn3 equals (1/2, 1/2, 1/2). The same wave vector is found for URhIn5, while our recent experiment on D10 (proposal 5-41-808) revealed for the U2RhIn8 compound a propagation vector of (1/2, 1/2, 0). This proposal is a continuation of proposal 5-41-808. We like to determine the magnetic moment of the U in U2RhIn8 as well as the temperature evolution of AFM state in U2RhIn8 and URhIn5 to study the influence of the RhIn2-layer.

ILL Report: Magnetic structure of $U_n Rh In_{3n+2}$ (*n* = 1, 2) compounds

Scientific background: Remarkably, many intriguing phenomena discovered in condensed matter physics during the past decades were found in intermetallic lanthanide (4f) or actinide (5f) compounds exhibiting tetragonal crystal structure. Examples are heavy fermion superconductivity in CeCu₂Si₂ [1], hidden order in URu₂Si₂ and quantum criticality beyond the Landau-Ginzburg-Wilson paradigm in for instance YbRh₂Si₂, CeRhIn₅ and Ce₂RhIn₈ [2-4]. The lattice-type naturally inhabits a certain degree of frustration of the 4f or 5f moments and the electronic dimensionality is often ascribed being less than 3-dimensional akin to layered structures. Both, frustration and dimensionality, play a crucial role in the description of earlier mentioned phenomena. In that sense, it is interesting to explore the effect of f-s,p,d electron hybridization on similar type of compounds which can be achieved by replacing the 4f-electron element (Ce, Yb) by a 5f element. (U). In the series, $CeIn_3$, $CeRhIn_5$ and Ce_2RhIn_8 the Ce 4*f*-electron is strongly localized. The compounds order antiferromagnetically with T_N of 10.2K, 3.8K and 2.8K respectively, and become superconducting under hydrostatic pressure. UIn₃ has been exhaustively investigated. The compound orders antiferromagnetically (type-II AFM) at T_N = 88K with propagation vector (1/2,1/2,1/2) and moments aligned along <110>-axis. Interestingly, NQR experiments reveal that the U-moments have localized character. Until recently solely U_nTGa_{3n+2} (T: transition element) compounds exist including only two so-called 2-1-8 compounds, U_2FeGa_8 and U₂RhGa₈ both being paramagnetic. URhIn₅ was the first with In as *p*-element to be synthesized. In addition Bartha et al. [5] succeeded in preparing U_2RhIn_8 , another 5f - analogue in the Ce-series. Both compounds order AFM with Néel temperatures $T_N = 117K$ (98K) for U₂RhIn₈ (URhIn₅). A recent NMR study on URhIn₅ suggested that AFM here is driven by itinerant 5f electrons and has propagation vector $\mathbf{k} = (1/2.1/2.0)$ [6]. This proposed wave vector was confirmed by a recent neutron experiment on PANDA-FRM II [7]. The size of the magnetic moment yields $\mu = 1.65 \,\mu_{\rm B}/U$. However, little is known about the magnetic properties of U₂RhIn₈. The current experiment focuses on the magnetic structure determination of U_2RhIn_8 , to find out the magnetic moment on the Uranium and to follow the evolution of the AFM state with temperature in order to clarify the character of the magnetic ordering (2D or 3D). The experiment was a follow up experiment of ILL proposal 5-41-908 where already we were able to determine the propagation vector being (1/2, 1/2, 0).

Experimental: Single crystals of U₂RhIn₈ have been grown from In-flux. The samples are plate-like with *c*-axis perpendicular to the plate. Typical dimensions are $1 \times 1 \times 0.5 \text{ mm}^3$ (mass ~ 1 mg). Prior to the neutron experiment, the samples were subjected to thermodynamic and transport experiments [5]. One sample was selected for further study on which we performed a Laue neutron single crystal diffraction experiment utilizing CYCLOPS instrument at ILL, Grenoble first. Scans were taken at T = 2 K (AFM state) and 130 K (paramagnetic state). The presence of additional magnetic Bragg reflections in the 2 K-scan indicated that the ground state of U₂RhIn₈ is AFM. The respective Laue patterns were further analyzed using Esmeralda software. By this we were able to confirm that the propagation vector in U₂RhIn₈ indeed is $\mathbf{k} = (1/2, 1/2.0)$. Subsequent neutron experiment was conducted on D10 in order to resolve the magnetic structure. The neutron wavelength equals $\lambda = 2.36 \text{ Å}$ and measurements were done down to T = 1.8 K.

Results: We measured the intensity of two magnetic reflections (-0.5,1.5,-1) and (0.5,2.5,1) at various temperatures between 1.8 K and 135 K. Figure 1 exemplarily presents the temperature dependence of the measured intensity (-0.5,1.5,-1). Clearly, intensity which relates to the ordered moment on the U-ions sets in below T_N (117 K) and increases upon lowering temperature. In order to follow the evolution of the ordered moment of the U-ion the integrated intensity has been calculated and plotted versus temperature in Fig. 2.

Fig.1: Temperature dependence of the intensity on the magnetic reflection (-0.5, 1.5, -1). Error bars are within symbol size

Below approximately 80 K, the intensity shows no further increase. Figure 2 includes the nuclear reflection at reciprocal space position (-2,0,0). The integrated intensity of the nuclear reflection is almost constant over the entire measured temperature range demonstrating the absence of a $k_0 = 0$ ferromagnetic component to the magnetic structure in accordance with results on CYCLOPS. Near the transition temperature, the integrated intensity of the magnetic diffraction peaks may be fit to a simple power law, $I \propto (T_N - T)^{2\beta}$ with T_N the Néel temperature and β is the order parameter critical exponent. The fits were performed in a small interval of 108 K < T < 120 K yielding $T_{\rm N} = 117$ K in agreement with macroscopic measurements [5]. For the critical exponent β we obtained for both datasets a value of $\beta = 0.325$. The value points to a 3D-Ising ordering of the U-moments [8]. In the following we employed MAXMAGN software using the refined structure parameters of U_2 RhIn₈ and propagation vector \mathbf{k} as input. We obtained 10 1D irreducible representations associated with the \mathbf{k} , but only 6 of them are part of the global reducible magnetic representation of the 2g Wyckoff site occupied by U-ions. All 6 subgroups assume unit-cell doubling in *a*-direction. The magnetic space groups P_C4/mbm (127) and P_C4/nbm (125) have the magnetic moment aligned μ along [001]. The C_amma (67) and C_ammm (65) require alignment along [100] and the remaining two subgroups P_Bmna (53) and P_Bmma (51) have μ parallel to [110]. To further identify the magnetic structure we measured the intensities of magnetic satellites described by k at T = 1.8K. From the 174 magnetic reflections only 34 were independent. For refinement we used FullProf and we revealed best agreement with our data considering a commensurate magnetic structure with moments arranged along [001], i.e., tetragonal c-axis. The agreement factors yield RF = 13.4% and $RF^2 = 12.1\%$. The magnetic structure is depicted in Fig. 3. It corresponds to the magnetic space group $P_{c}4/nbm$ – maximal magnetic subgroup of the paramagnetic space group P4/mmm.

Fig.2: Temperature dependence of the integrated intensity of the magnetic reflections (-0.5,1.5,-1) and (0.5,2.5,1). For comparison the integrated intensity of the nuclear reflection on (-2,0,0) is added. The solid (dashed) black line is power law fits in order to determine β from (-0.5,1.5,-1) and (0.5,2.5,1, respectively.

Fig.3: Magnetic strucuture of U₂RhIn₈. For clarity only the U-ions are displayed.

References:

- [1] O.Stockert et al., Nature Physics 7, 119-124 (2011)
- [2] J. Custers et al., Phys. Rev. Lett. 104, 186402 (2010)
- [3] H. Hegger et al., Phys. Rev. Lett. 84, 4986 (2000)
- [4] M. Nicklas et al., Phys. Rev. B 67, 020506(R) (2003)
- [5] A. Bartha et al., J. Magn. Magn. Mater. 381, 310 (2015)
- [6] H. Sakai et al., Phys. Rev. B 88, 045123 (2013)
- [7] P. Čermák et al., Magnetic structure of recently discovered URhIn₅, experimental report for proposal p8818
- [8] G. S. Brush, Rev. Mod. Phys 39, 883 (1967