Proposal:	5-42-347		Council:	10/2012			
Title:	Vortex lattice study of highly ordered underdoped YBa(2)Cu(3)O(6+x)(x=0.5, 0.7)						
This proposal is	nombraicaia	m of 5 42 2	220				
Research Area:	Physics						
Main proposer:	LOEW Toshinao						
Experimental Team: LOEW Toshinao							
-	BLACKBURN Elizabeth						
	HOLMES Alexander						
	CAMERON Alistair						
	WHITE Jonathan						
	LIM Joshua						
	LEMBERGER louis						
	PORRAS PEREZ GUERRERO Juan Pablo						
Local Contact:	DEWHUR	ST Charles					
Samples:	YBa(2)Cu(3)O(6+x)						
Instrument		Req. Days	All. Days	From	То		
D33		8	5	19/03/2013	24/03/2013		
Abstract: We propose to p highly CuO-chair performed on sto	erform sma n ordered s pichiometric	all-angle ne amples of t	utron scat he High-T ee YBa2C	tering investiga c superconduc u307, which is	tions of the vortex tor YBa(2)Cu(3)O close to optimal c	< lattice (VL) in underdoped, twir (6+x). Our previous studies have doping. This new study aims to e	nfree, and e been examine

highly CuO-chain ordered samples of the High-Tc superconductor YBa(2)Cu(3)O(6+x). Our previous studies have been performed on stoichiometric and twinfree YBa2Cu3O7, which is close to optimal doping. This new study aims to examine the VL on two samples of varying underdoping, for doping levels where field-induced charge-density-wave (CDW) order has been reported.

Experimental report

Proposal: 5-42-347 Council: 10/2012

Small angle neutron scattering (SANS) studies of the vortex lattice in cuprates provide important information about the field dependent anisotropies within the superconducting state. Vortex lattice studies of slightly overdoped stoichiometric $YBa_2Cu_3O_7$ [1] have provided important information regarding the roles of the Fermi surface and superconducting gap anisotropy in $YBa_2Cu_3O_{6+x}$ (YBCO_{6+x}). Previous attempts of SANS studies of underdoped YBCO_{6+x} were unsuccessful.

We recently improved our crystal growth procedure and are now able to prepare high purity $YBCO_{6+x}$ single crystals which are fully detwinned, exhibit highly ordered CuO chain superstructures, and which are sufficiently large for neutron scattering experiments. With this experiment we mainly investigated ortho-II ordered YBCO_{6.55} (superconducting T_c=61K, hole doping p=0.11) and took first test measurements on ortho-III ordered YBCO_{6.75} (T_c=75K, p=0.13).

The two studied samples are crystal arrays with a total sample mass of ~260mg for YBCO_{6.55} and ~70mg for YBCO_{6.75}, coaligned on a silicon plate. We were using D33 equipped with the University of Birmingham 17T horizontal field cryomagnet. The YBCO_{6+x} samples were mounted with the crystallographic c-axis in the beam direction. The instrument configuration (wavelength, collimation, detector distance) used for the main part of the experiment with magnetic fields between 0.1T and 0.2T was (12Å, 12.8m, 13m).

The vortex lattice in YBCO_{6.55} was studied at T=2K for fields between 0.05T and 0.2T by taking rocking scans through the Bragg peaks. The background was taken at T=2K and H=0T. Hexagonal vortex lattice Bragg spots could be obtained for fields up to 0.15T. For higher fields only a ring pattern indicating a strongly disordered vortex lattice was measured. For H=0.10T we studied the temperature dependence of the vortex lattice Bragg peaks. Some test measurements on YBCO_{6.55} at higher fields up to H=4T and elevated temperatures, trying to suppress pinning effects remained unsuccessful. First measurements on YBCO_{6.75} were taken for H=0.10T.

While we could obtain clear vortex-lattice Bragg spots for $YBCO_{6.55}$, we could only get a ring-like structure for $YBCO_{6.75}$, see Figure 1. This could be in part due to the fact that the ortho-II superstructure ordering is better defined than the ortho-III superstructure. Another reason is likely the smaller sample mass of $YBCO_{6.75}$ compared to $YBCO_{6.55}$. It might be worth trying to increase the sample mass of our $YBCO_{6.75}$ sample for future studies.

While in YBCO₇ ($T_c=86K$, p=0.18) a vortex lattice is observed to the highest fields (>10T) which can be accessed in SANS studies [1], our measurements on YBCO_{6.55} and YBCO_{6.75} indicate that a vortex lattice can be observed only at very low fields below ~1T. From transport measurements it has been argued that the upper critical field H_{c2} has a minimum

around p=1/8 in YBCO_{6+x} [2]. If this was true, one could expect that for YBCO_{6.50} (T_c=50K, p=0.08) a vortex lattice might persist to higher fields than in YBCO_{6.55}.

References

[1] J.S. White et al., PRL 102, 097001 (2009).

[2] G. Grissonnanche et al., arXiv: 1303.3856.

Figure 1 Vortex-lattice diffraction pattern observed in our highly ordered ortho-II phase $YBCO_{6.55}$ and ortho-III phase $YBCO_{6.75}$ crystals for a magnetic field parallel to the crystallographic c-axis of 0.10T.