Proposal: 5	-42-415			Council: 4/20	16
Title: S	earch for magnetic skyrmions in apolar metal Y3Co8Sn4				
Research area: P	hysics				
This proposal is a ne	ew proposal				
Main proposer:	Rina TAKAGI				
Experimental tea	am: Jonathan WHITE				
	Rina TAKAGI				
Local contacts:	Dirk HONECKER				
	Robert CUBITT				
	Andrea PIOVANO				
Samples: Y3Co8	Sn4				
Instrument		Requested days	Allocated days	From	То
IN3		1	1	17/11/2016	18/11/2016
D33		3	3	18/11/2016	21/11/2016

Abstract:

Recently there has been a surge of interest in skyrmion spin textures. However, to date only few skyrmion hosting materials are known, and the skyrmions are almost always of the same chiral vortex-type. Here we propose a polarized SANS investigation of the long wavelength incommensurate magnetic structures of the polar crystal Y3Co8Sn4. This material potentially hosts a triple-q state, or a skyrmion crystal in the bulk, where the skyrmions may be of a new type. However, based on available data, it is not possible to assign the nature of the incommensurate magnetic modulation, i.e. if it is of helical or cycloidal type, and hence if the suspected skyrmion state is respectively of the common vortex-type or of a new Neel-type. Here we aim to resolve this controversy in a three-day polarized SANS experiment on D33.

Experimental Report 5-42-415: Search for magnetic skyrmions in a polar metal Y₃Co₈Sn₄

R. Takagi¹, J. S. White², D. Honecker³, H. M. Rønnow⁴, and S. Seki¹

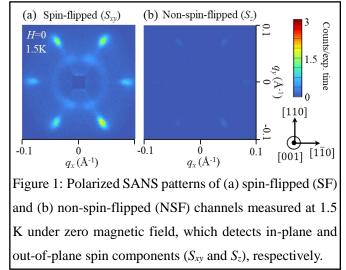
 ¹RIKEN Center for Emergent Matter Science (CEMS), Wako 351-0198, Japan
²Laboratory for Neutron Scattering and Imaging (LNS), Paul Scherrer Institute (PSI), CH-5232 Villigen, Switzerland
³Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, F-38042 Grenoble Cedex 9, France
⁴Laboratory for Quantum Magnetism (LQM), Institute of Physics, École Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland,

Introduction

Recently, multiply periodic states similar to the atomic ordering in crystals have been identified in a wide variety of physical context. In magnetic systems, such multiply periodic states are often called multiple-q spin orders, and are attracting attention as the source of nontrivial magnetic topology and associated emergent phenomena^[1]. In particular, the triple-q state represented by the superposition of helical spin textures can be often considered as the crystallized form of magnetic skyrmion (i.e. vortex-like swirling spin texture with topologically-protected particle nature)^[2]. In bulk materials, such triple-q skyrmion orders have exclusively been found in noncentrosymmetric magnets, in which the relativistic Dzyaloshinskii-Moriya (DM) interaction is the key for the skyrmion formation. On the other hand, the latest theories further predict the emergence of various multiple-q magnetic orders from different physical origins, such as frustrated exchange interaction in triangular lattice system and spin-charge coupling in itinerant hexagonal system^[3], while their experimental realization in the actual materials has rarely been achieved.

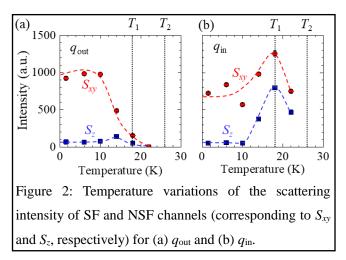
To realize the potential multiple-q helimagnetism, the search for appropriate material systems to fulfill the corresponding condition is essential. Our target material Y₃Co₈Sn₄ is a member of R_3M_8 Sn₄ (R being Y or rare earth element and M being 3d transition metal element) family characterized by the polar hexagonal crystal structure (space group: $P6_3mc$) with itinerant nature of magnetism^[4-6]. This material family is unique because all of the above-mentioned mechanisms are allowed to become active in principle, depending on the relative magnitude of each interaction. We have successfully grown high quality single crystals of Y₃Co₈Sn₄, which undergoes a ferromagnetic transition around 55 K and exhibits the easy-plane anisotropy perpendicular to the [001] axis. We performed a small-angle neutron scattering (SANS) experiment on the crystal at PSI. For the (001) plane under zero

magnetic field, we found that two incommensurate spin modulation vectors of different magnitude, i.e. six-fold magnetic Bragg reflections at $q_{out} \sim 0.081$ Å⁻¹ and ring-shaped weak magnetic reflections at $q_{in} \sim 0.040$ Å⁻¹, appear below $T_1 = 18$ and $T_2 = 26$ K, respectively. The magnetic field dependence of the SANS patterns showed that the q_{out} keeps the six-fold symmetry for both in-plane and out-of-plane orientations of *H*, pointing to the formation of the triple-*q* state. In contrast, the ring-shaped pattern of q_{in} was turned into the two-fold spots under in-plane *H*, indicating the multiple-domain of single-*q* state.


In this D33 experiment, we investigated the detail of magnetic structure described by q_{out} and q_{in} by using a polarized SANS technique. By using polarized neutrons in a geometry, where the neutron polarization (S_n) is parallel to the incident beam (k_{in}), the longitudinal (parallel to S_n) and transversal (perpendicular to S_n) spin components can be independently evaluated as the corresponding scattering will purely show a non-spin-flip (NSF) or spin-flip (SF) response, respectively.

Experimental Method

Single crystal sample of $Y_3Co_8Sn_4$ were synthesized by arc-melting stoichiometric amounts of pure Y, Co, and Sn pieces, followed by slow cooling in a silica tube under vacuum. In the SANS experiments with longitudinal polarization analysis using the D33, the incident neutron beam with a wavelength of 4.6 Å is polarized using an Fe-Si transmission polarizer and can be reversed by means of an RF spin flipper. The neutron spin state after the sample was analyzed using a nuclear spin-polarized ³He cell. Both *S*_n and *k*_{in} were directed along the [001] axis. In this configuration, the SF (NSF) signal detects the spin component normal (parallel) to the [001] axis, which is referred to as *S*_{xy} (*S*_z). The neutron spin polarization was preserved by means of magnetic guide fields of ~5 mT on the intermediate flight path between polarizer and analyzer. Temperature scans were performed in the warming process after zero field cooling (ZFC).


Results

Figures 1(a),(b) show the polarized SANS patterns of the SF and NSF channels measured at 1.5 K under zero magnetic field. The magnetic reflections were clearly observed in the SF channel but not in the NSF one for both q_{out} and q_{in} . This proves that neither q_{out} nor q_{in} have S_z component at the ground states, and therefore the magnetic moments

always lie within the (001) plane. Temperature development of each spin component for q_{out} and q_{in} is summarized in Figs. 2(a),(b). Note that the S_z component of q_{in} gradually increases above 14 K, which may reflect the spin fluctuation toward the critical temperature T_2 .

The emergence of multiple-q magnetic order has been predicted theoretically

from various distinctive mechanisms, such as (1) DM interaction in noncentrosymmetric system, (2) frustrated exchange interactions in triangular lattice system, and (3) spin-charge coupling in itinerant hexagonal system. If the DM mechanism is responsible for the present case, the polar symmetry of crystal structure should favor the cycloidal spin texture with magnetic moments confined within the [100]-[001] plane, and application of $H \parallel (001)$ will lead to the formation of Néel-type skyrmion lattice state with triple-q nature. Here, both of these magnetic orders should contain nonzero magnitude of S_z component. However, the presently-observed confinement of the spins within the (001) plane is clearly inconsistent with this scenario; therefore, the DM interaction is not the main source of the incommensurate magnetism in Y₃Co₈Sn₄. Another potential source is the frustrated exchange interactions, but this is also unlikely because the Curie-Weiss temperature determined from the temperature dependence of the inverse magnetic susceptibility agrees well with T_c . Then, we are now considering the spin-charge coupling mechanism in itinerant magnets as the origin of the triple-q and single-q magnetic orders in the present compound. This result suggests that the traditional DM mechanism is not the only approach to realize the multiple-qorders and will trigger further investigation of itinerant hexagonal magnets as a unique material platform to explore the topological spin textures.

References

[1] N. Nagaosa and Y. Tokura, Phys. Scr. T146, 014020 (2012).

- [2] U. K. Rößler, A. N. Bogdanov, and C. Pfleiderer, Nature 442, 797-801 (2006).
- [3] C. D. Batista, S.-Z. Lin, S. Hayami, and Y. Kamiya, Rep. Prog. Phys. 79, 084504 (2016).
- [4] F. Canepa, et al., J. Alloys Compd. 297, 109 (2000).
- [5] F. Canepa et al., J. Magn. Magn. Mater. 220, 39 (2000).
- [6] F. Canepa et al., J. Phys.: Condens. Matter 17, 373 (2005).