Experimental report

Proposal:	roposal: 5-42-475		Council: 4/2018				
Title:	Small	Small angle neutron scattering studies of the Kagome spinels Co5-xZnxTeO8					
Research area: Physics							
This proposal is a new proposal							
Main proposer:		Alain PAUTRAT					
Experimental team:		Alain PAUTRAT					
Local contacts:		Robert CUBITT					
Samples:	Co4ZnTeO8	inTeO8					
	Co5TeO8 (disordered spinel)						
Co3Zn2TeO8							
	Co5TeO8 (ordered spinel)						
Instrument		Requested days	Allocated days	From	То		
D33			5	2	01/10/2018	03/10/2018	
Abstract:							

We have synthetised and started to analysied the stuctural and magnetic properties of the non centro symmetric kagome spinels Co5xZnxTeO8, where interesting magnetic and magnetoelectric properties are expected. From first neutron scattering and magnetization measurements, we report a complex phase diagram with ferrimagnetic long range order, spiral states and magnetic short range order (including pure spin glasses). Magnetic Small Angle Neutron scattering will be a precious tool for investigated the large scale magnetic structures and the genuine nature of short range ordered states.

Experiment 5-42-475

Small angle neutron scattering studies of the Kagome spinels Co5-xZnxTeO8

A. Pautrat, S. Podchezertsev, N. Barrier,

Introduction

 $Co_5 TeO_8$ compound has a spinel structure and could be synthesized in two polymorphs: a classical Fd-3m and an ordered $P4_332$. An ordered polymorph has two magnetic phase transition to incommensurate conical at 45 K followed by emergence of collinear ferrimagnetic component at 27 K. Moreover magnetic ordering is preceded by formation of short-range spin correlations. It's also possible to obtain Co_4ZnTeO_8 compound in which Zn^{2+} will play a role of magneto-diluting agent and will preferentially substitute Co²⁺ ions on tetrahedral sites. This compound, in turn, demonstrates spin-glass behavior with $T_c = 15$ K. And small angle neutron scattering is an ideal instrument to probe both magnetically ordered and disordered states within this family of materials.

Experimental

In the present research two samples were studied: $Co_5 TeO_8$ and $Co_4 Zn TeO_8$ Both samples are polycrystalline round pellets with radius $r \approx 0.5$ cm and thickness $h \approx 0.03$ cm. Small angle neutron scattering experiments were carried out on D33 SANS diffractometer with a wavelength $\lambda = 6$ Å. Co₅TeO₈ sample were measured at zero field within a temperature region between 20 and 155 K and then at 20, 32 and 36 K with an applied magnetic field from 0 to 7 T both: longitudinal and transverse. SANS data for Co4ZnTeO8 was also collected in a zero field first for a wide temperature region between 2 and 100 K with a subsequent transverse magnetic field scans between 0 and 7 T at 2, 7 and 10 K.

Preliminary results

Zero field measurements for Co_5TeO_8 showed presence of isotropic magnetic scattering below T_{c1} =45 K that changes its position from $|Q| \approx 0.07$ Å⁻¹ above T_{c2} = 27 K and $|Q| \approx 0.1$ Å⁻¹ below, which is consistent with previous neutron powder diffraction experiments. Transverse magnetic field scans revealed some remarkable features. For field dependent measurement at 36 K Q-vector demonstrates an increase from |Q| = 0.8 to 0.95 Å⁻¹ upon raise of a magnetic field. For 32 K Q-vector increases at low fields from $|Q_1| = 0.068$ to 0.073 Å⁻¹ up to 0.06 T at which additional anisotropic scattering with $|Q_2| \approx 0.1$ Å⁻¹ appears and the intensity from Q_1 redistributes into four features. For 0.07 T < H < 0.09 T there is a coexistence of these two features with Q_1 and Q_2 and for H > 0 only Q_2 feature is present on scattering patterns, the value of Q_2 in turn remains stable up to the highest values of the magnetic field (Fig. 1, 2). At 20 K isotropic magnetic scattering with $|Q| \approx 0.1$ Å⁻¹ which stays permanent with field growth. Longitudinal magnetic field scans didn't show any significant features on the whole range of magnetic field values.

Figure 1. Field evolution of the scattering pattern for Co₅TeO₈ at 32 K

Figure 2. Field evolution of Q-vectors for $Co_5 TeO_8$ at 32 K.

SANS measurements didn't show any sharp feature for Co_4ZnTeO_8 however upon cooling scattering patterns demonstrate an intensity enhance that points out a forming of short range ordered domains.