Experimental report

Proposal:	5-53-251				Council: 10/2014		
Title:	Shortening of the correlation lengths and critical scattering in high-Tc cuprates						
Research area: Physics							
This proposal is a resubmission of 5-53-238							
Main proposer: Lucile MANGIN TH			RO				
Experimental team: Lucile MANG		Lucile MANGIN THR	.0				
		Philippe BOURGES					
Local contacts:	1	Andrew WILDES					
Samples: YBa2Cu3O7 YBa2Cu3O6.6							
Instrument			Requested days	Allocated days	From	То	
D7			15	13	17/04/2015	30/04/2015	
Abstract:							

The phase diagram of high-Tc superconductors is dominated by the mysterious pseudo-gap (PG) phase out of which the superconducting state emerges. Recent ultrasound measurements have shown that the PG phase is a broken-symmetry state, whose order parameter remains to be unambiguously determined. Polarized neutron measurements in four different cuprate families, including YBa2Cu3O6+d, have revealed the existence of an intra-unit-cell magnetic order, associated with the PG state. Our recent experiment on D7 allowed us to get a deeper insight on the intrinsic nature of this magnetic phase, through a better characterization of correlation lengths and critical scattering. This study was carried out on a nearly optimally doped YBa2Cu3O6.85 sample. We would like now to follow the evolution of our observations for various hole doping levels using the underdoped YBa2Cu3O6.6 and the weakly overdoped YBa2Cu3O7.

Experimental report - D7 - April 2015 Intra-unit-cell magnetic correlations in YBa₂Cu₃O_{6+x}

Lucile Mangin-Thro, Philippe Bourges, Yvan Sidis Local contact: Andrew Wildes

The phase diagram of cuprate high temperature superconductors is dominated by the pseudo-gap (PG) phase which presents highly unusual physical properties. Many theories attribute its origin to the proximity of a competing state, but there is a wide disagreement about the nature of this state. It has been proposed that the PG phase involves loop currents (LC) flowing within the CuO₂ square lattice [1]. Two loops per CuO₂ plaquette generate staggered orbital magnetic moments and break time-reversal symmetry but preserve lattice translation invariance, corresponding to an intra-unit-cell (IUC) magnetic order.

Using polarized neutron scattering in four cuprates families [2-5], including YBa₂Cu₃O_{6+x}, the existence of an IUC magnetic order was reported. This order develops below a temperature T_{mag} that matches the PG temperature T* as defined by the resistivity measurements. The observed symmetry is consistent with the LC phase [1]. Around optimal doping (p=0.16), where the superconducting transition is maximum, the magnetic critical temperature as well the magnetic intensity are reduced as one approaches the quantum critical doping [1,6] (p_c~0.2), where the PG state vanishes according to thermodynamic measurements. Even using polarized neutron diffraction, the observation of the static magnetic signal is difficult.

In YBa₂Cu₃O_{6.85} (T_c=89K, p=0.15), we have been able to observe the IUC magnetic order that settles in below T~200K>T_c, proving the persistence of the IUC magnetic order near optimal doping [7]. However, the magnetic intensity is strongly reduced. Combining polarized neutron measurements on 4F1 (LLB) and D7 (ILL), the 3D magnetic correlations appears to develop at short range only (ξ_{ab} ~20a) [7]. Using polarization analysis, we were able in addition to extract the components of the magnetic moment which display different temperature dependences. At low temperature, both in-plane and out-of-plane components are present, in agreement with the observation of a tilt of the magnetic moment [6]. Above T_{mag}, the in-plane component vanishes. At high temperature the magnetic moment is thus perpendicular to the CuO₂ plaquette, originally predicted in the loop current model [1]. Further, we observed a diffuse magnetic scattering away from the Bragg position. Applying the D7 polarization analysis relation for paramagnetic systems, typically valid for disordered magnetism, we demonstrated that the magnetic intensity exhibits a net maximum as a function of temperature at T_{mag}.

To go further, we performed an experiment on D7 by studying 2 samples: $YBa_2Cu_3O_{6.97}$ (T_c=92K, p=0.17) and $YBa_2Cu_3O_{6.75}$ (T_c=78K, p=0.135, T_{mag}=200K). The samples were aligned in a way to access wave vectors Q=(H,0,L). The measurements were carried out at k_i=1.3Å⁻¹. We performed similar measurements as done for the YBa₂Cu₃O_{6.85} sample, in the SF and NSF channels for the X, Y and Z polarisations.

On the one hand, from preliminary measurements performed on 4F1 (LLB) on YBa₂Cu₃O_{6.97}, we know that there is no magnetic intensity appearing in the normal state, suggesting a deeper study in the superconducting state. On D7, we studied the trajectory going through Q=(1,0,-0.25) (Fig. a). We nevertheless observed a slightly depolarisation of the neutron beam below T_c. The flipping ratio decreases at low temperature. Because of this polarisation leakage, the study around the Bragg position (H=1) is difficult, however we are able more easily to study the diffuse scattering, and we especially focused on H=0.9. The Fig. b shows the magnetic intensity at H=0.9, after polarisation analysis $2I_x + 2I_y - 4I_z$ typically used on D7 to extract the magnetic diffuse scattering. In addition, we summed over 10 detectors around H=0.9 to get better statistics. We notably observe a maximum of intensity around 70K (below T_c). Let note that we did not observe any particular effect as a function of temperature above T_c at H=0.9 and even at H=1. In this particular case, it seems that the intra-unit-cell magnetic correlations survive in the superconducting state. This study shows that T_{mag}~70K for YBa₂Cu₃O_{6.97} (which is considerably lower than T_{mag}~200K for YBa₂Cu₃O_{6.85}). The doping dependence of the transition temperature is steep for the YBa₂Cu₃O_{6+x} family.

On the other hand, for YBa₂Cu₃O_{6.75}, we report the temperature dependences of the magnetic moment components extracted around the Bragg position at Q=(1,0,1/8) (Fig. c) from polarisation analysis. Assuming that the background is decreasing as shown by the dotted line, the in-plane component would appear at low temperature (below T_{mag}) whereas the out-of-plane would be already present at high temperature (similarly to what we observed in YBa₂Cu₃O_{6.85} [7]). The negative level is due to the fact that we observed higher intensities for the polarisation Z. The Fig. d corresponds to the temperature dependence of the magnetic intensity around H=0.9, it shows a maximum around 170K (T_{mag} =200K). The peak occurs around T_{mag} similarly to what we observed previously but the intensity is smaller compared to the one at higher doping (YBa₂Cu₃O_{6.97}, Fig. c). The behaviour as a function of doping of this magnetic signal around H=0.9 is in agreement with the loss of magnetic correlations upon increasing the hole doping.

As a conclusion, in all studied samples we observe a peak of magnetic intensity (increasing with doping) around T_{mag} away from the Bragg position. Moreover, we confirm with a new sample that at the same temperature T_{mag} , the in-plane component appears whereas the out-of-plane component is present well above T_{mag} . The beam depolarisation and the poor statistics however appeals for more work in order to better estimate the different temperature dependences.

Figure. **a**) Reciprocal space studied on D7 with the $YBa_2Cu_3O_{6.97}$ sample. **b**) T-dependence of the magnetic signal measured around H=0.9 for $YBa_2Cu_3O_{6.97}$. **c**) T-dependence of the magnetic signal measured around H=1 for $YBa_2Cu_3O_{6.75}$. **d**) T-dependence of the magnetic signal measured around H=0.9 for $YBa_2Cu_3O_{6.75}$. **d**) T-dependence of the magnetic signal measured around H=0.9 for $YBa_2Cu_3O_{6.75}$. In all panels, the magnetic signal is extracted from polarization analysis.

References:

[1] C.M. Varma, PRB 73 155113 (2006); [2] B. Fauqué et al, PRL 96 197001 (2006); [3] Y. Li et al, Nature 455 372 (2008); [4] V. Balédent et al, PRL 105 027004 (2010); [5] S. De Almeida-Didry et al, PRB 86 020504 (2012); [6] P. Bourges and Y. Sidis, CR Physique 12 461 (2011); [7] L. Mangin-Thro et al, Nature Communications 6 7705 (2015)