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Abstract:

Recently, we have experimentally and theoretically demonstrated that the DMI influences the magnetic microstructure of polycrystalline

magnetic  materials  exhibiting  a  large  defect  density  (e.g.  grain  boundaries  or  dislocations).  Microstructural  defects  act  as  a  source  of

additional local chiral interactions due to the symmetry breaking at the defect sites, similar to the intrinsic DMI in noncentrosymmetric

crystals such as MnSi. The signature of this effect is a characteristic asymmetry in the polarized SANS cross section. In this continuation

work, we will explore the temperature dependence of the defect-induced DMI by carrying out polarized SANS experiments on a 21nm-

sized nanocrystalline terbium sample (with a high density of grain boundaries).  The outcome of this experiment will  contribute to our

fundamental understanding of polarized magnetic SANS and one will  learn on the defect-related DMI mechanism.
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1. Introduction 

Ultrafine-grained and nanocrystalline magnetic materials have attracted 

considerable interest over the last decades owing to their large potential 

for technological applications [1–4]. Among the most well-known and 
efficient techniques for synthesizing such materials are inert-gas 

condensation and high-pressure torsion (HPT), the latter being a severe 

plastic deformation method. For a brief overview of the main techniques 
for the preparation of bulk ultrafine-grained and nanocrystalline materials, 

we refer the reader to the article by Koch [5]; a detailed review on the HPT 

technique can be found in Ref. [6]. 
 

Since the magnetic properties will ultimately determine the performance 

of ultrafine-grained materials, a precise knowledge of the relationship 
between the microstructure and the magnetic properties, i.e., the 

correlation between e.g. the saturation magnetization, coercive field, and 

magnetic anisotropy and the average grain size or crystallographic texture 
is crucial. Previous studies have reported that the magnetic properties of 

strained nanocrystalline materials produced by HPT strongly differ from 

polycrystalline samples with larger grain sizes; in particular, a reduction 
of the saturation magnetization (by 5 %) and a significant increase of the 

coercive field (∼ 50 times larger) were observed in HPT Ni using 

magnetometry [7]. These features were qualitatively explained, 

respectively, by the decrease of the exchange energy in the vicinity of 

defects [8] and by the increase of the dislocation density within the grain 

boundaries [7]. The investigation of the magnetic domain structure of HPT 

materials with the aim to clarify the magnetization reversal mechanism 
has been mainly performed using Lorentz electron microscopy [9,10]. 

Although these studies reported that the domain structure (i.e., shape and 

size) is not strongly affected by the grain size, the influence of a high 
density of lattice defects (e.g. vacancies, dislocations, grain boundaries, 

pores) induced by HPT on the spin structure still needs to be further 

clarified. As previously demonstrated, HPT can be used to modify the 
structure and thus to control the macroscopic magnetic properties of 

magnetic materials [11,12]. Therefore, in the context of defect engineering 

of advanced materials using severe plastic deformation [13], a better 
understanding of the influence of the defects on the magnetic properties at 

different length scales is necessary.  

 
In this study we employ unpolarized magnetic small-angle neutron 

scattering (SANS) to investigate the magnetic microstructure of HPT Ni 

on the mesoscopic length scale. Magnetic SANS is a powerful technique 
which provides volume-averaged information about the perturbation of 

the magnetization vector field on a length scale of about 1 – 500 nm (see 

Refs. [14,15] for reviews of the magnetic SANS fundamentals and 

applications). This technique was recently used to demonstrate that in HPT 

Fe defects act as a source of an anomalous effective magnetic anisotropy 

field [16]. Here, we go a step further in the neutron data analysis. We 
determine the real-space magnetic correlation lengths from the magnetic 

SANS data to obtain estimates for the average defect size as well as for 
the spatial extent of the surrounding spin disorder within the bulk of the 

sample. The specific neutron data analysis of the spin misalignment brings 

additional information which is important for the understanding of the role 
played by the defects in magnetic materials. 

 

2. Magnetic SANS Analysis  

2.1. Unpolarized SANS cross section 

When the applied magnetic field is perpendicular to the incident neutron 

beam (H0 ⊥ k0), the elastic total (nuclear + magnetic) unpolarized SANS 

cross section dΣ/dΩ at momentum-transfer vector q can be written as [14, 

15]: 
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where V is the scattering volume, bH = 2.91  108 A-1m-1 relates the atomic 

magnetic moment to the atomic magnetic scattering length, �̃�(𝒒) and 

�̃�(𝒒) = [�̃�𝒙(𝒒), �̃�𝒚(𝒒), �̃�𝒛(𝒒)] represent the Fourier transforms of the 

nuclear scattering length density N(r) and of the magnetization vector field 

M(r), respectively, θ specifies the angle between H0 and q  q{0, sinθ, 

cosθ} in the small-angle approximation, and the asterisks “*” denote the 

complex conjugated quantities. For small-angle scattering, the component 

of the scattering vector along the incident neutron beam, here qx, is smaller 

than the other two components qy and qz, so that only correlations in the 

plane perpendicular to the incoming neutron beam are probed.  

 

In our neutron-data analysis below, we subtract the SANS signal at the 

largest available field of 6.7 T [approach-to-saturation regime] from the 

measured data at lower fields. This subtraction procedure eliminates the 

nuclear SANS contribution ∝ |�̃�|
2
, which is field independent, and it 

yields the following purely magnetic SANS cross section dmag/d: 
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where the “” stand for the differences of the Fourier components at the 

two fields considered. We emphasize that dmag/d is strongly dominated 

by the two transversal magnetization Fourier components �̃�𝑥,𝑦. 

 

2.2. Magnetic correlation function  

The normalized magnetic correlation function 𝐶(𝑟, 𝐻0) was numerically 

computed by a direct Fourier transformation of the experimental data for 

dΣmag(𝑞, 𝐻0) dΩ⁄  according to [17]: 
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where 𝑗0(𝑞𝑟) = sin(𝑞𝑟) /𝑞𝑟 is the zeroth-order spherical Bessel function. 

For this purpose, the experimental data dΣmag(𝑞, 𝐻0) dΩ ⁄ beyond 𝑞max 

were extrapolated to infinity using a power law, dΣmag(𝑞, 𝐻0) dΩ ⁄ ∝

1/𝑞𝑛 with 4 ≲ n ≲ 7 [compare inset in Fig. 1(b)], and the extrapolation 

from 𝑞min to q = 0 was done according to dΣmag(𝑞, 𝐻0) dΩ ⁄ ∝ 𝑎 + 𝑏𝑞2. 



 
 

 

2.3. Magnetic correlation length 

The magnetic correlation length 𝑙c characterizes the distance over which 

perturbations in the spin structure around a lattice defect are transmitted 

by the exchange interaction into the surrounding crystal lattice [18,19]. 

Several procedures for obtaining  𝑙c are discussed in the literature, e.g., 

𝑙c(𝐻0) can be defined as the value of r for which 𝐶(𝑟, 𝐻0) = 𝐶(0)𝑒−1, or 

𝑙c can be found from the logarithmic derivative of 𝐶(𝑟, 𝐻0) in the limit 

𝑟 → 0 (Ref. [18]). Here, we determined the magnetic correlation length 

𝑙c(𝐻0) from the 𝐶(𝑟, 𝐻0) data at a particular field according to: 
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The field dependence of the 𝑙c data was then fitted using the following 

expression:  

 

𝑙c(𝐻0) = ℒ + √
2𝐴ex

𝜇0𝑀s(𝐻0 + 𝐻∗)
          ,       (5) 

 

where the field-independent parameter ℒ is of the order of the defect size, 

and 𝐴ex and 𝑀s are the exchange-stiffness constant and the saturation 

magnetization, respectively. The field 𝐻∗ models the contribution of the 

magnetostatic and magnetic anisotropy field to the internal magnetic field. 
In the approach-to-saturation regime and for single-phase materials, where 

nonzero divergences of the magnetization from within the bulk are 

expected to be small [20], the main contributions to 𝐻∗  are due to the 

magnetic anisotropy. The phenomenological model, Eq. (5), is based on 
micromagnetic theory [21,22] and expresses the relationship between the 

nuclear and magnetic microstructure of a material. Equation (5) has 

already been successfully used to describe the spin misalignments in 
several nanocrystalline bulk ferromagnetic materials [23,24]. To reduce 

the number of free parameters in the data analysis (see below), we fixed 

𝑀s to the value estimated from the magnetization curve, and 𝐴ex to 8.5 

pJ/m. This value is obtained by performing a global fit analysis of the 

field-dependent dΣ dΩ⁄  data shown in Fig. 1(a) based on the 

micromagnetic SANS theory developed in Refs.  [19,25]. The resulting 

volume-averaged value of 𝐴ex = 8.5  0.2 pJ/m compares favorably with 
data reported for nanocrystalline Ni [22]. 

 

 

3. Results and discussion 

 

Figure 1(a) displays the (over 2π) azimuthally-averaged total (nuclear + 

magnetic) SANS cross section dΣ(𝑞, 𝐻0) dΩ⁄  measured at different 
applied magnetic fields. As can be seen, at the smaller momentum 

transfers q the cross section dΣ(𝑞, 𝐻0) dΩ⁄  increases by more than two 

orders of magnitude when H0 is decreased from 6.7 T to 0.1 T. Since the 

nuclear scattering is field independent, the strong field dependence of 

dΣ(𝑞, 𝐻0) dΩ⁄  observed in Fig. 1(a) originates from spin-misalignment 

scattering caused by mesoscale spin disorder (i.e. from the failure of the 
spins to be completely aligned along H0). Figure 1(b) shows the 

corresponding purely magnetic SANS cross sections dΣmag(𝑞, 𝐻0) dΩ⁄ , 

which were obtained by subtracting the total scattering at 6.7 T 

(approaching saturation) from the data at lower fields. The magnitude of 

 dΣmag(𝑞, 𝐻0) dΩ⁄  is of the same order as dΣ(𝑞, 𝐻0) dΩ⁄ . The asymptotic 

power-law exponent n in dΣmag(𝑞, 𝐻0) dΩ ⁄ ∝ 1/𝑞𝑛 was found to be 

larger than the value of n = 4 [see inset in Fig. 1(b)]; n = 4 would 

correspond to scattering from particles with sharp interfaces or from 

exponentially correlated fluctuations. The finding of a field-dependent n 

> 4 supports the notion of dominant spin-misalignment scattering, for 

which exponents n = 4–8 are theoretically predicted and experimentally 
found [14,23]. 

 
 
Figure 1: (a) Magnetic-field dependence of the (over 2π) azimuthally-averaged total 

(nuclear + magnetic) SANS cross section dΣ(𝑞, 𝐻0) dΩ⁄  and (b) of the purely 

magnetic SANS cross section dΣmag(𝑞, 𝐻0) dΩ⁄  (log-log scale). Dashed lines in (b): 

Extrapolation of dΣmag(𝑞, 𝐻0) dΩ ∝ 1/𝑞𝑛⁄  from 𝑞max to infinity and of 

dΣmag(𝑞, 𝐻0) dΩ ⁄ ∝ 𝑎 + 𝑏𝑞2 from 𝑞min to q = 0. Inset in (b): Field dependence of 

the asymptotic power-law exponent n of the magnetic SANS cross section 

 dΣmag(𝑞, 𝐻0) dΩ⁄  on a semi-logarithmic scale 

 

Figure 2 shows the normalized magnetic correlation function 𝐶(𝑟, 𝐻0), 

which was numerically computed according to Eq. (3). Increasing the field 

from 0.1 to 4 T results in a decrease of 𝐶(𝑟, 𝐻0) at a given r. This 

observation reflects the decrease of the spin-misalignment fluctuations 
and the suppression of the amplitude of the static disorder with increasing 

field. Furthermore, the correlations do not decay exponentially (see the 

log-linear plot in the inset of Fig. 2), in agreement with the absence of a 
corresponding n = 4 power-law exponent observed in Fig. 1(b). Moreover, 

for the lowest applied fields, the absence of a finite slope of 𝐶(𝑟, 𝐻0) in 

the limit 𝑟 → 0 is consistent with the absence of sharp interfaces in the 
magnetic microstructure and with the presence of a continuous magnetic 

scattering length density variation. By contrast, for homogeneous particles 

with a sharp interface (i.e., with a discontinuous jump in the scattering-
length density), the slope of the correlation function at the origin is finite 

and provides information on the fine structure of the particle (e.g., on the 

surface-to-volume ratio). This is a direct consequence of the asymptotic q-

4 Porod behavior of the SANS cross section (see the discussion by Porod 

in Ref. [26]). As shown in Ref. [17], for bulk ferromagnets, which are 

characterized by a smoothly-varying continuous magnetization vector 

field, the slope of C(r) vanishes as 𝑟 → 0, and the asymptotic power-law 

behavior of the magnetic SANS cross section exhibits power-law 

exponents larger than n = 4.  

 

 
Figure 2: Magnetic-field dependence of the normalized magnetic correlation 

function 𝐶(𝑟, 𝐻0). The correlation functions were numerically computed by a direct 

Fourier transformation [Eq. (3)] of dΣmag(𝑞, 𝐻0) dΩ ⁄ shown in Fig. 1(b). Inset: Plot 

of 𝐶(𝑟, 𝐻0) on a semi-logarithmic scale, emphasizing the non-exponential decay of 

the correlations. 

 
Figure 3 presents the field dependence of the magnetic correlation length 

𝑙c(𝐻0) determined from the 𝐶(𝑟, 𝐻0) using Eq. (4). As can be seen, 𝑙c(𝐻0) 

increases from about 14 nm at the highest field of 4 T to 26 nm at the 

lowest field of 0.1 T. Moreover, for all fields investigated, the values of 

𝑙c(𝐻0) remain much smaller than the average crystallite size of 60 nm of 



 
 

the HPT Ni sample. This latter observation thus indicates the presence of 

spin-misalignment correlations on a scale smaller than the average 

crystallite size. From the nonlinear least squares fit of the 𝑙c(𝐻0) data to 

Eq. (5) (dashed line in Fig. 4), the following best-fit parameters are 

obtained: ℒ = 11.3 ± 0.1 nm and 𝜇0𝐻∗ = 71.2 ± 3.0 mT. We 

reemphasize that ℒ can be regarded as an estimate of the average defect 

size and 𝐻∗ models the influence of the magnetostatic and magnetic 

anisotropy field contributions to the internal magnetic field. The estimated 

“defect size” ℒ ~ 11 nm suggests that the origin of the spin misalignment 

observed in HPT Ni results from a high density of crystal defects on a 
scale smaller than the grain size, as previously suggested in HPT Fe [16]. 

In the remanent state, we estimate the penetration depth 𝛿 = 𝑙c(𝐻0 = 0) −
ℒ of the spin disorder into the ferromagnetic Ni-phase to be ~ 22 nm (Fig. 

3). If the field 𝐻∗  in Eq. (5) were exclusively due to an effective uniaxial 

magnetic anisotropy of strength 𝐾u
eff, then 𝐻∗ = 2𝐾u

eff/(𝜇0𝑀𝑠) and the 

penetration depth 𝛿 = 𝑙c(𝐻0 = 0) − ℒ would be related to the domain-

wall width 𝛿w ∝ √𝐴ex/|𝐾u
eff|. Using 𝐴ex = 8.5 pJ/m and assuming the 

(magnetocrystalline) single-crystal value of 𝐾u
eff = −5.7 kJ/m3  [27] 

(ignoring that fcc Ni has a cubic rather than an uniaxial anisotropy 

symmetry), we obtain 𝛿w ≅ 39 nm. On the other hand, using 𝐴ex = 8.5 

pJ/m and demanding that √𝐴ex/𝐾u
eff = 22 nm, as is experimentally 

found, we estimate 𝐾u
eff ≅ 1.8  104 J/m3. This corresponds to an increase 

by a factor of about 4 compared to the (magnetocrystalline) value reported 
in Ni single crystal. In line with the HPT process and with the finding of 

an increased coercivity, the above value of 𝐾u
eff indicates a significant 

contribution to the magnetic anisotropy due to magnetoelastic effects; this 

hypothesis is consistent with the strain observed in the HPT sample The 

value of 2𝐾u
eff/𝑀𝑠 self-consistently evaluates to 𝜇0𝐻∗ ≅ 73 mT 

(using 𝑀𝑠 = 482 kA/m and assuming a mass density of 8.912 g/cm3]), in 

agreement with the experimental result. 

 

 
Figure 3: Field dependence of the magnetic correlation length 𝑙c(𝐻0), determined 

from the computed 𝐶(𝑟, 𝐻0) data shown in Fig. 2 (log-log scale). Dashed line: Fit of 

the 𝑙𝑐(𝐻0) data using Eq. (5).  

 

4. Conclusion 

We employed unpolarized magnetic SANS to investigate the influence of 
crystal defects on the magnetic microstructure and the macroscopic 

magnetic properties of nanocrystalline Ni prepared by HPT. The analysis 

of the field-dependent magnetic SANS data suggests the presence of 
strong spin misalignment on the mesoscopic length scale. In fact, the 

computation of the magnetic correlation function and the correlation 

length confirmed the presence of spin disorder on a scale smaller than the 
average crystallite size of 60 nm. The phenomenological model, Eq. (5), 

provides an excellent description of the field dependence of the spin-

misalignment correlation length. We estimated the defect size to be around 
11 nm and the penetration depth of the spin misalignment into the pure Ni 

phase in the remanent state to be around 22 nm. Under certain 

assumptions, the analysis of the penetration depth allows one to conclude 

on the magnitude of the effective magnetic anisotropy. For HPT Ni, we 
find an increased anisotropy (factor of 4), presumably due to 

magnetoelastic interactions, relative to the single-crystalline ground state. 

Our findings are supported by micromagnetic simulations which highlight 
that microstructural defects (such as pores) can induce significant 

nanoscale spin disorder, representing a contrast for magnetic SANS. The 

presented neutron-data analysis procedure is particularly useful for defect-
rich materials and may pave the way to tune magnetic properties through 

defect engineering as proposed e.g. for magnetic nanostructured materials 

such as nanoparticles [28]. 
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