Experimental report

Proposal:	6-05-1	015		Council: 10/2019				
Title:	Pressu	Pressure-driven change to the Mg and Al coordination environments in silicate glass						
Research area: Materials								
This proposal is a new proposal								
Main proposer: Philip Stephen SAL			ION					
Experimental t	eam:	Rita MENDES DA SI	LVA					
		Philip Stephen SALM	ON					
		Hesameddin MOHAMMADI						
Local contacts: Henry FISCHER		Henry FISCHER						
Samples: (MgO)0.25(Al2O3)0.25(SiO2)0.5 with 25Mg and natMg								
Instrument			Requested days	Allocated days	From	То		
D4			6	6	30/06/2021	07/07/2021		
Abstract:								

Mg and Al are two essential elements in materials that range from commercial display glass to the glasses used as models for dry basaltic melts. There is great interest in the structural response of these glasses to pressure, but little is known from in situ experiments. We will address this issue by using neutron diffraction to investigate a prototypical magnesium aluminosilicate glass at pressures up to 8 GPa. Here, the method of Mg isotope substitution will be employed to give site-specific information on both the Mg and Al coordination environments. The results will reveal, for the first time, the nature of the structural changes that take place. They will then be used to test the validity of atomic interaction models that are being developed for molecular dynamics simulations. By establishing the correct theoretical ingredients for reproducing the experimental results, these models will become transferable. This capability will enable accurate predictions for the pressure-dependent structure and properties of materials with different compositions.

Structure of lithium silicate glass by isotope substitution

The structure of the lithium silicate glasses $(\text{Li}_2\text{O})_x(\text{SiO}_2)_{1-x}$ with x = 0.29, 0.33 and 0.36 was measured using neutron diffraction with ⁰Li and ⁷Li isotope substitution, where the zero denotes a null scattering length. For each composition, the first order difference function $\Delta D_{\text{Li}}(r) = {}^{0}D(r) - {}^{7}D(r)$ was successfully obtained from the total pair-distribution functions ${}^{0}D(r)$ and ${}^{7}D(r)$ measured for the samples of $({}^{0}\text{Li}_2\text{O})_x(\text{SiO}_2)_{1-x}$ and $({}^{7}\text{Li}_2\text{O})_x(\text{SiO}_2)_{1-x}$, respectively. The $\Delta D_{\text{Li}}(r)$ functions reveal the nearest-neighbour coordination environment of the mobile Li⁺ ions. The results are being combined with those from high-energy x-ray diffraction and ²⁹Si magic angle spinning NMR experiments to build a complete picture of the glass network and find the effect of its rigidity on the ion mobility.

Fig. 1. The total pair-distribution functions ${}^{0}D(r)$ and ${}^{7}D(r)$ measured for samples of glassy $({}^{0}\text{Li}_{2}\text{O})_{1/3}(\text{SiO}_{2})_{2/3}$ and $({}^{7}\text{Li}_{2}\text{O})_{1/3}(\text{SiO}_{2})_{2/3}$, respectively, and the first order difference (FOD) function $\Delta D_{\text{Li}}(r) = {}^{0}D(r) - {}^{7}D(r)$.