			•	-		
Proposal:	7-01-3	374	Council: 10/2012			
Title:	Lattice	Lattice dynamics in MxV2Al20 compounds				
Research are	a: Physic	CS				
This proposal is	s a contin	uation of 7-01-342				
Main propos	er:	Hannu MUTKA				
Experimental team:		Hannu MUTKA				
		Z. HIROI				
Local contacts:		Michael Marek KOZA				
		Hannu MUTKA				
Samples: M	xV2A120	M=Al, Ga, Sc, Y, La, Ce				
Instrument		R	Requested days	Allocated days	From	То
IN4		4		4	02/05/2013	06/05/2013
IN5		2		2	20/02/2013	22/02/2013
Abstraat.						

Abstract:

We wish to continue the investigations on the lattice dynamics of the MxV2Al20 compounds started on IN4 and IN6. We have found in Al0.3V2Al20 a low energy (2meV at T=2K) optical phonon band that exhibits a strong anharmonicity evidenced by threefold increase of characteristic energy on heating up to 300K. In other compounds M=Y, La, Ce, Sc the (x=1) the low energy mode is absent and quasi-harmonic lattice dynamics prevails. The continuation aims to complete the data and to improve the data quality for optimal comparison with ab-initio calculated phonon response.

Two papers concerning the dynamics have already been published, one more on the diffraction part is coming later.

Cite this: Phys. Chem. Chem. Phys., 2014, 16, 27119

Effect of the electropositive elements A = Sc, La, and Ce on the microscopic dynamics of AV_2Al_{20}

Michael Marek Koza,*^a Andreas Leithe-Jasper,^b Erik Sischka,^b Walter Schnelle,^b Horst Borrmann,^b Hannu Mutka^a and Yuri Grin^b

We report on the inelastic response of AV₂Al₂₀ (with A = Sc, La and Ce) probed by high-resolution inelastic neutron scattering experiments. Intense signals associated with the dynamics of Sc, La and Ce are identified in the low-energy range at 6–14 meV in ScV₂Al₂₀ and at 8–16 meV in LaV₂Al₂₀ and CeV₂Al₂₀. Their response to temperature changes between 2 and 300 K reveals a very weak softening of the modes upon heating in LaV₂Al₂₀ and CeV₂Al₂₀ and a distinguished blue shift by about 2 meV in ScV₂Al₂₀. By means of density functional theory (DFT) and lattice dynamics calculations (LDC) we show that the unusual anharmonicity of the Sc-dominated modes is due to the local potential of Sc featured by a strong quartic term. The vibrational dynamics of ScV₂Al₂₀ as well as of LaV₂Al₂₀ and CeV₂Al₂₀ is reproduced by a set of eigenmodes. To screen the validity of the DFT and LDC results they are confronted with data from X-ray diffraction measurements. The effect of the strong phonon renormalization in ScV₂Al₂₀ on thermodynamic observables is computed on grounds of the LDC derived inelastic response. To set the data in a general context of AV₂Al₂₀ compounds and their physical properties we report in addition computer and experimental results of the binary V₂Al₂₀ compound.

On the microscopic dynamics of the 'Einstein solids' AlV_2Al_{20} and GaV_2Al_{20} , and of YV_2Al_{20} : a benchmark system for 'rattling' excitations

Michael Marek Koza,** Hannu Mutka,* Yoshihiko Okamoto,
 $^{\rm b}$ Jun-ichi Yamaura $^{\rm c}$ and Zenji Hiroi
 $^{\rm d}$

The inelastic response of AV_2AI_{20} (with A = AI, Ga and Y) was probed by high-resolution inelastic neutron scattering experiments and density functional theory (DFT) based lattice dynamics calculations (LDC). Features characteristic of the dynamics of Al, Ga and Y are established experimentally in the lowenergy range of the compounds. In the stereotype 'Einstein-solid' compound AlV_2Al20 we identify a unique spectral density extending up to 10 meV at 1.6 K. Its dominating feature is a peak centred at 2 meV at the base temperature. A very similar spectral distribution is established in GaV₂Al₂₀ albeit the strong peak is located at 1 meV at 1.6 K. In YV₂Al₂₀ signals characteristic of Y dynamics are located above 8 meV. The spectral distributions are reproduced by the DFT-based LDC and identified as a set of phonons. The response to temperature changes between 1.6 and \sim 300 K is studied experimentally and the exceptionally vivid renormalization of the A characteristic modes in AlV₂Al₂₀ and GaV₂Al₂₀ is quantified by following the energy of the strong peak. At about 300 K it is shifted to higher energies by 300% for A = Al and 450% for A = Ga. The dynamics of A = Y in YV_2AI_{20} show a minor temperature effect. This holds in general for modes located above 10 meV in any of the compounds. They are associated with vibrations of the V_2Al_{20} matrix. Atomic potentials derived through DFT calculations indicate the propensity of A = Al and Ga to a strong positive energy shift upon temperature increase by a high quartic component. The effect of the strong phonon renormalization on thermodynamic observables is computed on grounds of the LDC results. It is shown that through the hybridization of A = Al and Ga with the V_2Al_{20} dynamics the matrix vibrations in the low-energy range follow this renormalization.

Received 11th September 2014, Accepted 14th October 2014

DOI: 10.1039/c4cp04097j

www.rsc.org/pccp

Cite this: DOI: 10.1039/c5cp04005a

Received 9th July 2015, Accepted 17th August 2015 DOI: 10.1039/c5cp04005a

www.rsc.org/pccp