Proposal:	7-03-1	Council: 4/2016					
Title:	Hydro	ydrogen dynamics in novel solid-state Li conductors					
Research area: Materials							
This proposal is a new proposal							
Main proposer: Arndt REMHOF							
Experimental t	team:	Tatsiana BURANKOV	νA				
		Arndt REMHOF					
		Leo DUCHENE					
Local contacts:	:	Bernhard FRICK					
Samples: Li4BN3H10							
Li2B	NH6						
Instrument			Requested days	Allocated days	From	То	
IN16B			6	4	21/11/2016	25/11/2016	

Abstract:

We propose to use high resolution neutron spectroscopy to investigate the hydrogen dynamics in lithium amide-borohydrides, which are novel superionic Li+ conductors for all solid-state Li-ion batteries. Recently, unprecedented Li superionic conductivity near room temperature was discovered in lithium amide-borohydrides (Li1+x(BH4)(NH2)x). Representative examples including Li3BH4(NH2)2 (cubic, I213) and Li2(BH4)(NH2) (trigonal, R3) respectively, showing Li+ conductivity of 6 and 8 mS cm-1 at 40 °C, comparable to the existing liquid electrolyte.

Based on DFT and molecular dynamic calculations, we attribute the high conductivity to the presence of a network of vacant tetrahedral sites, acting as conduction channels. The diffusion of Li+ in the conduction channel is thereby a collective motion, supported by the localized motion of the anions, especially of the [NH2]- ions. We therefore propose to investigate the hydrogen dynamics in the anions of lithium amide-borohydrides by IFWS and quasielastic scans. The goal is to understand the role of the [BH4]- and [NH2]- anions in the conduction mechanism.

Hydrogen dynamics in novel solid-state Li conductors

Proposal No.: 7-03-150

Experimental team: Léo Duchêne, Tatsiana Burankova, Arndt Remhof Instrument: IN16b (21.11.2016–25.11.2016) Local contact: Bernhard Frick

The samples used in the present study are lithium amide-borohydrides with a general formula $Li_{1+x}[BH_4][NH_2]_x$. To separate the quasielastic contributions of the two species, BH_4 and NH_2 , two samples were synthesized for each of the studied compositions with x = 2 and x = 3. In the first case, the samples were protiated, whereas the second pair of the samples contained deuterated NH_2 groups. Assuming that the studied compounds scatter mainly incoherently and that the BH_4 and NH_2 motions are not correlated, the dynamic structure factor of the protiated and deuterated sample can be expresses in the following way:

$$S_{\text{prot}}(Q, E) = \frac{4\sigma_{\text{H}}S_{\text{BH4}}(Q, E) + 2x\sigma_{\text{H}}S_{\text{NH2}}(Q, E)}{4\sigma_{\text{H}} + 2x\sigma_{\text{H}}}$$
(1a)

$$S_{\text{deut}}(Q, E) = \frac{4\sigma_{\text{H}}S_{\text{BH4}}(Q, E) + 2x\sigma_{\text{D}}S_{\text{NH2}}(Q, E)}{4\sigma_{\text{H}} + 2x\sigma_{\text{D}}}$$
(1b)

where $S_{BH4}(Q,E)$ and $S_{NH2}(Q,E)$ stand for the BH₄ and NH₂ contributions, σ_H and σ_D are the neutron incoherent scattering cross sections of hydrogen and deuterium, respectively. Eq 1 is basically a system of two linear equations, which can be solved in the whole scanned temperature range (Figure 1). Apparently, all main characteristic step-like features of the EFWS in the mixed compounds originate from the BH₄ units. The decrease of the NH₂ elastic intensity is mostly due to vibrational and librational motions.

Figure 1. EFWS of the protiated and partially deuterated samples (x = 2). The BH₄ and NH₂ contributions are the solutions of eq 1 and scaled to 0.5 at low temperature for clarity

Figure 2. EFWS (circles) and IFWS (triangles) of the partially deuterated samples $Li_{1+x}[BH_4][ND_2]_x$ with x = 3 (red) and x = 2 (blue) averaged over the studied Q-range

The EFWS and IFWS of the samples with x = 2 and x = 3 are similar in the temperature range of 10–340 K (Figure 2). These dynamics correspond to the rotational motion of the BH₄ groups around C3-axes with different jump rates, $1/\tau$ (around one selected C3-axis) and $1/\tau_0$ (around the other three axes)

$$S_{\text{rot}_120}(Q, E) = \frac{1}{4} \left(1 + 3j_0 \left(Qr_0 \sqrt{3} \right) \right) \delta(E) + \frac{1}{4} \left(1 - j_0 \left(Qr_0 \sqrt{3} \right) \right) \mathcal{L}(\Gamma_1, E) + \frac{1}{2} \left(1 - j_0 \left(Qr_0 \sqrt{3} \right) \right) \mathcal{L}(\Gamma_2, E)$$

$$\Gamma_1 = \frac{4\hbar}{\tau_0}; \quad \Gamma_2 = \frac{\hbar}{2} \left(\frac{3}{\tau} + \frac{5}{\tau_0} \right)$$
(2b)

where r_0 is related to the B-H bond length r_{B-H} as $r_0 = \frac{2\sqrt{2}}{3}r_{B-H}$. From the fits of the QENS spectra measured at 220, 250 and 300 K we estimated the residence times. The slowest component (τ_0) appeared to be resolved only at 300 K and is of the order of 20 ns for all the samples. The faster residence times (τ) corresponding to the uniaxial rotation are summarized in Table 1.

		-		
$Li_{1+x}[BH_4][Y]_x$	Y	T = 220 K	T = 250 K	T = 300 K
x = 2.0	NH_2	1120(50)	460(20)	55(4)
x = 2.0	ND_2	1160(50)	370(12)	54(2)
x = 3.0	NH_2	1230(50)	516(30)	77(4)
x = 3.0	ND_2	1620(50)	501(15)	73(2)

Table 1. Residence time τ (in ps) of the uniaxial C₃-rotation as obtained from the fits of the QENS spectra.

Table 2. Parameters of the best fit IFWS curves obtained for the uniaxial C3-rotation model with a Gaus	sian
distribution of activation energies	

		θ		
$Li_{1+x}[BH_4][Y]_x$	Y	$ ilde{ au}$, fs	E _A , kJ/mol	ΔE_A , kJ/mol
x = 2.0	NH ₂	1.22(0.12)	25.2(0.2)	2.64(0.04)
x = 2.0	ND_2	2.57(0.18)	23.3(0.2)	2.59(0.04)
x = 3.0	NH_2	2.87(0.19)	24.3(0.2)	1.30(0.04)
x = 3.0	ND_2	1.62(0.11)	25.5(0.2)	1.66(0.05)

The shape of the IFWS curves can be analyzed in terms of the same model assuming a Gaussian distribution of activation energies (Figure 3). The sample with the BH₄:NH₂ ratio of 1:2 exhibits a broader range of the activation energies than the 1:3 composition (Table 2). The second characteristic feature of the IFWS/EFWS (Figure 2) can be seen only in the highly conducting sample with x = 2 above ~355 K, which can be related to a pronounced endothermic event at 313 K on heating. The possible origin this feature in IFWS/EFWS could be a diffusionlike motion for a certain fraction of the particles in the system. The Chudley-Elliott model

Figure 3. IFWS of the protiated (blue circles) and partially deuterated (black circles) samples with the BH₄:NH₂ ratio of 1:3 at $Q = 1.18 \text{ Å}^{-1}$. The red lines are the model IFWS curves taking into account the uniaxial C3-reorientations with a single activation energy (dotted line) and a Gaussian distribution of energies (dashed line)

Figure 4. Quasielastic linewidths as obtained from the model independent fit (black circles: raw data, red circles: after multiple scattering procedure) and the result of the surface fit with the Chudley-Elliott model