Experimental report

Proposal:	7-03-1	89		Council: 10/2019				
Title:	Oxide	Oxide ions diffusion mechanism in melilite-type solid electrolytes						
Research area: Materials								
This proposal is a new proposal								
Main proposer:		Ivana EVANS						
Experimental team: Local contacts: Samples: La1.54Sr0.4		Miguel Angel GONZA Bettina SCHWAIGHO Quentin BERROD Ivana EVANS Markus APPEL Quentin BERROD	ALEZ DFER					
La1.40Sr0.60Ga3O7.20 LaSr0.60Bi0.40Ga3O7.20								
Instrument			Requested days	Allocated days	From	То		
IN16B			6	4	24/09/2020	28/09/2020		
IN6-SHARP			5	2	22/08/2020	24/08/2020		
Abstract:								

It has been demonstrated that the 2D extended corner-sharing tetrahedral network of the melilite-type La1+xSr1−xGa3O7+0.5x can both accommodate excess oxide anions and sustain their mobility. The composition La1.54Sr0.46Ga3O7.27 shows the highest oxide ion conductivity of ~0.1 S/cm at 800 C. This represents an improvement of 4 orders of magnitude compared to LaSrGa3O7. In this proposal, we request IN16b and IN6 to carry out variable-temperature quasi-elastic and inelastic neutron scattering experiments on La1.54Sr0.46Ga3O7.27, La1.40Sr0.60Ga3O7.20 and LaSr0.60Bi0.40Ga3O7.20 oxide ion conductors. This will be the first direct observation of the O2- dynamics in melilite-type materials, which will be analysed in conjunction with the first ab initio molecular dynamics (AIMD) simulations on these systems. This will enable us to relate the differences in oxygen ion conductivities to the interstitial oxygen excess (La1.54Sr0.46Ga3O7.27 and La1.40Sr0.60Ga3O7.20) and Bi doping (La1.40Sr0.60Ga3O7.20 and LaSr0.60Bi0.40Ga3O7.20) in terms of activation energy, residence time, favourable conduction paths and possible lone pair blocking effect for the conduction in the Bi-doped sample.

Oxide ions diffusion mechanism in melilite-type solid electrolytes

Background

Oxide ion electrolytes with conductivities exceeding 10^{-2} S cm⁻¹ at moderate temperatures (~500 - 600 °C) are necessary for widespread use of these materials in solid oxide fuel cells for electricity generation. The mobile oxide ion defects in these materials are usually vacancies in the anion sublattice. However, there has been a growing interest in the recent years in systems where interstitial or excess oxide ions are the charge carriers. It has been demonstrated that the 2D extended corner-sharing tetrahedral network of the melilite-type La_{1+x}Sr_{1-x}Ga₃O_{7+0.5x} can both accommodate excess oxide anions and sustain their mobility.¹ In this solid solution, prepared by varying the La:Sr ratio relative to the stoichiometric melilite LaSrGa₃O₇, the composition La_{1.54}Sr_{0.46}Ga₃O_{7.27} shows the highest oxide ion conductivity of ~0.1 S cm⁻¹ at 800 °C. This represents an improvement of 4 orders of magnitude compared to LaSrGa₃O₇.

Purpose of the experiment and expected outcomes

The overall aim of this study was to directly probe and understand the oxide ion conduction in La_{1.54}Sr_{0.46}Ga₃O_{7.27} and La_{1.4}Sr_{0.4}Ga₃O_{7.2}. Our experimental goals were

- 1) to collect the lattice dynamics signal (rotation and libration modes) and the quasielastic signal due the rapid localised reorientational motion (~ few tenth of ps) of GaOxpolyhedra.
- to collect the quasielastic signal due to long range diffusion of oxide ions on the ns timescale in melilite-type oxide ion conductors.

Experiments

For the measurements on IN16B, 6.16 g of La_{1.54}Sr_{0.46}Ga₃O_{7.27} were weighed out and filled into a Nb cell. Initially, a QENS measurement at RT was performed for 8h. On heating to 600 °C, elastic (5 min) and inelastic (30 min, 2 μ eV) fixed windows scans were recorded. On cooling QENS data were collected at 600 °C and 475 °C for 8 h each and at 350 °C for 9 h using a maximum energy transfer window of 7 μ eV.

Figure 1. Elastic fixed window scan (left) and inelastic fixed window scan (right) of La_{1.54}Sr_{0.46}Ga₃O_{7.27} collected on IN16B on heating.

On IN6Sharp, an incident wavelength of 5.12 Å was used. QENS measurements were collected at RT, 200 °C, 400 °C and 600 °C for 8 h per temperature. Due to some complications and time loss during the experiments, no neutron scattering data of La1.4Sr0.4Ga3O7.2 could be recorded.

The results of the fixed window scans measured on IN16B are shown in Figure 1. No change of slope is observed in the elastic fixed window scan which suggests that no quasielastic broadening can be observed. In the inelastic fixed window scan, and initial decrease of intensity is observed, followed by a slight increase. However, it does not increase above the points measured at RT, and initial data analysis suggests that no broadening is apparent in the QENS data.

Figure 2. The Q-integrated scattering function corrected for the Bose population factor against energy transfer at several temperatures for La_{1.54}Sr_{0.46}Ga₃O_{7.27} measured on IN6.

Figure 2 shows the Q-integrated scattering function against energy transfer at several temperatures for La_{1.54}Sr_{0.46}Ga₃O_{7.27} recorded on IN6. More detailed data analysis is currently in progress.

References

 Kuang, X.; A. Green, M.A., Niu, H.; Zajdel P.; Dickinson C.; Claridge, J.B.; Jantsky, L.; Rosseinsky, M.J. Interstitial oxide ion conductivity in the layered tetrahedral network melilite structure. Nature Materials 2008, 7, 498