Experimental report

Proposal:	8-04-8	3-04-803				Council: 10/2016			
Title:	Hierard	ierarchical mobility in silk proteins - implication for storage and spinning							
Research area: Biology									
This proposal is a resubmission of 8-04-775									
Main propose	er:	Cedric DICKO							
Experimental	team:	Cedric DICKO							
		Ann TERRY							
		Alex GREENHALGH							
Local contact	s:	Tilo SEYDEL							
Samples: Silk proteins									
Instrument		Requested days	Allocated days	From	То				
IN16B			3	2	06/02/2017	08/02/2017			

The formation of silk fibres in both spiders and silkworms is characterized by a controlled conversion of short range ordered structures in solution into long range ordered beta-sheet rich structures in the final fibre. The dynamics of the water and protein chains involved in the conversion remains, however, unknown. Building upon our newly developed deuterium exchange method; and, the performance of the IN16B spectrometer (faster, good dynamic range allowing access to both the internal and center-of-mass diffusion of proteins in solution); we wish to determine the global and internal dynamics leading to conformational changes in silk proteins in aqueous solution (D2O and H2O). The expected results will determine how hierarchical mobility plays a role in the control of silk proteins storage, aggregation, and spinning. The data analysis will build upon recently published frameworks to separate the contributions from the solvent water, internal, and global motions [M.Grimaldo et al., EPJ Web conf.83, 02005 (2015) and references therein].

Report on Experiment 8-04-803 on IN16b, 2017

Hierarchical mobility in silk proteins – implication for storage and spinning

Cedric Dicko¹, Imke Greving², Tilo Seydel³, Ann Terry⁴, Chris Holland ⁵, Fritz Vollrath⁶ ¹Chemistry dept., Lund University, Lund, Sweden ² HZG, Outstation Hamburg, Germany ³Institut Max von Laue - Paul Langevin, Grenoble, France ⁴ISIS –Rutherford Appleton Lab, UK ⁵Dept. of Materials Sciences and Engineering, Sheffield University, Sheffield, UK ⁶Dept. of Zoology, Oxford University, Oxford, UK

We have carried out the experiment 8-04-803 (IN16b) on native silk protein solutions extracted from the *Bombyx mori* silkworm silk species. Our principal aim was to describe the dynamics events taking place during silk conformational change as a function of temperature.

The main challenge of having the silk proteins in D_2O was solved earlier using a desalting column to exchange the H_2O to D_2O .

Figure 1 shows the transmission from SANS experiment of different silk protein solutions.

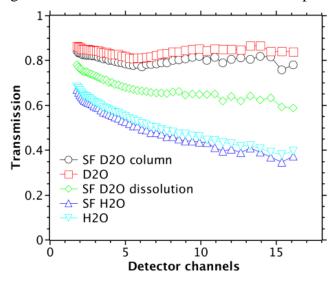


Figure 1. Neutron transmission of silk proteins (SF) in H_2O , dissolved in D_2O and exchanged in D_2O by means of an exchange column, D_2O buffer and H_2O buffer.

At IN16b, w	e prepared a	ind collected	the following	samples:
,	1 1		0	1

Sample	QENS (280 K)	FWS	Inelastic	QENS (353K)
			(1.3ueV)	
$SF_D_2O_3$	30 min	30s	90s	30min
SF_H ₂ O_1	30min	30s	90s	30min
TSF_D ₂ O_1c	30min	30s	90s	30min

Other samples were run, but failed. Mainly in the signal optimisation phase.

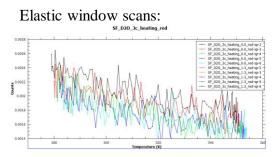
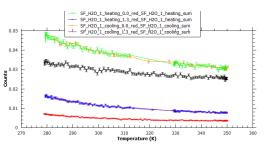



Figure 2. FWS at 0 and 1.3ueV for SF_D₂O

FWS at 0 and 1.3ueV for SF_H_2O

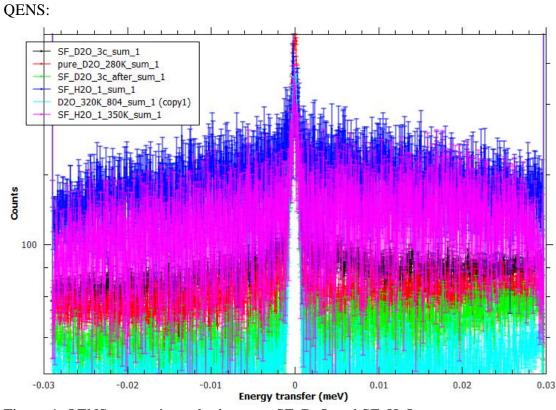


Figure 4. QENS comparison plot between SF_D₂O and SF_H₂O

In conclusion, we have successfully exchanged native silk protein from H_2O to D_2O . The FWS and QENS, to explore the temperature induced gelation did not work however. The weak signal intensities and slow conversion precluded any further useful analysis.