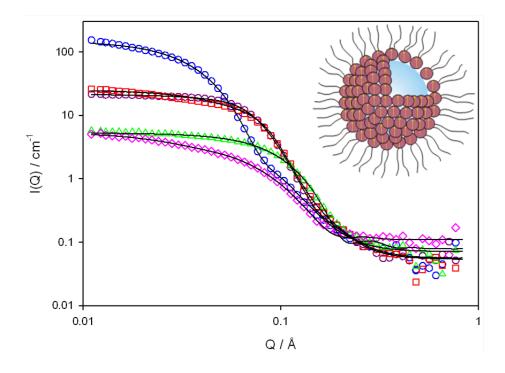

Proposal:	9-10-1317	Council:	10/2012		
Title:	Magnetic Microemulsions as TunableNanomagnets				
This proposal is a new proposal					
Researh Area:	Chemistry				
Main proposer:	EASTOE Julian				
Experimental Team: JAMES Craig					
	SMITH Gregory				
	YAN Ci				
	NAVARRO Miguel				
	ALEXANDER Shirin				
Local Contact:	GRILLO Isabelle				
Samples:	(Ho(AOT)3, Ce(AOT)3, Co(AOT)2 and Mn(AOT)2 see proposal - water - alkane (heptane)				
Instrument	Req. Day	s All. Days	5 From	То	
D11	2	2	31/03/2013	02/04/2013	
Abatuaata					

Abstract:


Control of sub-micron sized particles is of increasing interest as there is clear evidence that small atomic clusters (n = 10-1000 atoms) exhibit novel hybrid properties between the molecular and bulk solid-state limits. Through SANS and SQUID magnetometry we recently showed that quantum effects can be observed in nanoparticle-free ferrofluids through the design of magnetic micelles and microemulsions from magneto-surfactants1. Such systems bridge the gap between molecular nanomagnets (n <30) and magnetic nanoparticles (MNPs) (n = 100-1000)2, allowing controlled values of n and combining magnetic ordering with properties such as low-density, and electric insulation. This is a significant step forward as the advantage of employing these microemulsions over nanoparticle containing ferrofluids is in situ tunability through careful control of surfactant type, mixture ratio, and composite volume fractions: the proposal aims to explore this tunability.

9-10-1317 Title : Magnetic Microemulsions as TunableNanomagnets Instrument : D11 Dates of experiment : From : 31/03/2013 To : 02/04/2013

Figure 1: SANS profiles for surfactants in n- $d_{.16}$ heptane at 1.0 wt% at 25 °C. Lines through the data are fits (parameters in *Supporting Information, Table S1*). Co(AOT)₂ is at 0. 5 wt% due to phase separation at higher

concentrations. Na(AOT) (\circ), Co(AOT)₂ (\circ), Mn(AOT)₂ (\Box), Ce(AOT)₃ (Δ) Ho(AOT)₃ (\Diamond).

Figure 3: SANS profiles for D₂O-in-heptane microemulsions at 25 °C. Lines are model fits (parameters in *Supporting information, Table S2*). Na(AOT) ($^{\circ}$), Co(AOT)₂ ($^{\circ}$), Mn(AOT)₂ ($^{\Box}$) Ce(AOT)₃ ($^{\Delta}$), Ho(AOT)₃

 (\Diamond) . Inset is a schematic of a typical microemulsion droplet with aligning spins in a magnetic field.

We have synthesized the first anionic magnetic surfactants, which stabilize magnetic reversed micelles and microemulsions. More importantly, these surfactants have also enabled the first stable nanoparticle-free ferrofluids. The observed superparamagnetic behaviour not only suggests potential for new biomedical strategies, but also provides a new way to investigate evolution from molecular through to bulk solid-state magnetic limits.