Proposal: 9	-10-1439		Council: 4/2015						
Title:	Iydrophobicity inversion of	rophobicity inversion of short chained alcohols in microemulsions due to the polarity difference of polar and							
Research area: S	on-polar phase								
This proposal is a n	ew proposal								
Main proposer:	Tim SCHREINER								
Experimental te	am: Tim SCHREINER	Tim SCHREINER							
	Helge KLEMMER								
	Lena GRASSBERG	ER							
	Carola HARBAUEI	R							
Local contacts:	Isabelle GRILLO								
Samples: D2O/a	lcohol/ethylbenzene/ethylo	cyclohexane/C10E7							
Instrument		Requested days	Allocated days	From	То				
D33		3	2	16/09/2015	18/09/2015				
Abstract:									
Microemulsions play reactions. To control be used. In common	an important role in man the nanostructure of these non-ionic microemulsions	y applications e.g. cl e ternary or higher or s including n alkanes	eaning processes, der systems tempe these alcohols act	drug transport o rature as well as as co-solvent if	r as reaction medium titrating agents (e.g. a they are short chained	for chemical alcohols) can d (i<3) or co-			

be used. In common non-ionic microemulsions including n alkanes these alcohols act as co-solvent if they are short chained (i<3) or cosurfactant if they are long chained (i>4) thereby inducing phase inversion. While non-ionic surfactants of the general structure CiEj exhibit the same phase behaviour independent of the chemical nature of the oil used, we recently observed that this is not true for interfacially active alcohols: Methanol should act as a co-solvent in the ternary system water-ethylbenzeneheptaethyleneglycoldecylether (C10E7) solely looking at its molecular structure. However, it influences the phase behaviour as e.g. nbutanol would. Exchanging ethylbenzene by the non-aromatic, but structurally similar, ethylcyclohexane the expected effect of a cosolvent occurs. Hence, it seems very likely that the interfacial properties of alcohols also depend on the polarity difference between the two phases.

Hydrophobicity inversion of short chained alcohols in microemulsions due to the polarity difference of polar and non-polar phase

- Report on Experiment No: 9-10-1439 -

Abstract: Amphiphilic films, like in microemulsions, play an important role in many applications e.g. cleaning processes, drug transport or as reaction medium for chemical reactions [1]. To control the nanostructure of these ternary or higher order systems temperature as well as titrating agents (e.g. alcohols) can be used. In common non-ionic microemulsions including *n*-alkanes these alcohols act as co-solvent if they are short chained $(i \le 3)$ or co-surfactant if they are long chained $(i \ge 4)$ thereby inducing phase inversion [2, 3]. While non-ionic surfactants of the general structure C_iE_i exhibit the same phase behaviour independent of the chemical nature of the oil used, we recently observed that this is not true for interfacially active alcohols: Methanol should act as a co-solvent in the ternary system water – ethylbenzene – heptaethyleneglycoldecylether ($C_{10}E_7$) solely looking at its molecular structure. However, it influences the phase behaviour as e.g. *n*-butanol would. Exchanging ethylbenzene by the non-aromatic, but structurally similar, ethylcyclohexane the expected effect of a co-solvent occurs. Also in the modified ternary system water - ethylbenzene pentaethyleneglycoldecylether ($C_{10}E_5$) the same effect could be observed. Hence, it seems very likely that the interfacial properties of alcohols not only depend on the nature of the alcohol but also on the polarity difference between polar and non-polar phase. To elucidate this dependence we performed systematic scattering measurements in which the polarity difference of the phase as well as the nature of alcohol were varied to extract the interfacial composition as well as the scattering length density profile of the data to determine the very nature of the observed correlation.

SANS measurements: We performed SANS measurements in the bicontinuous microemulsion system D₂O/alcohol – ethylbenzene – C₁₀E₇ respectively D₂O/alcohol – ethylcyclohexane – C₁₀E₅ at a constant D₂O to oil and D₂O volume fraction $\phi = 0.50$ and a constant surfactant to the overall mass weight fraction γ close to the phase inversion temperature by varying the alcohol to alcohol and D₂O weight fraction ψ . Also investigations close to the efficiency points \tilde{X} of the systems were performed. For this, we used the instrument D33 with a wavelength of $\lambda = 6$ Å and with a sample-to-detector distance d = 12.8 m, 7 m and 2 m giving us a access to a *q*-range of $0.003 < q/Å^{-1} < 0.03$.

SANS results: All produced data could be described using the *Teubner-Strey* model [4] and further direct quantification of the total internal interface S/V was possible using the invariant according to *Porod* [5]. The data indicate in the system D₂O/alcohol – ethylbenzene – C₁₀E₇ as well as D₂O/alcohol – ethylcyclohexane – C₁₀E₅ close to the \tilde{X} -point for all alcohols a general decrease of the domain size ξ by increasing amounts of alcohol.

Figure 1: Correlation between the domain size ξ and the alcohol to alcohol and D₂O weight fraction ψ for the system *left*: D₂O/alcohol – ethylbenzene – C₁₀E₇ and *right*: D₂O/alcohol – ethylcyclohexane – C₁₀E₅ at a constant D₂O to oil and D₂O volume fraction $\phi = 0.50$, with methanol (black), ethanol (red), 1-propanol (green) and 1-butanol (blue).

For the system containing ethylbenzene (figure 1 *left*) the degree of domain size decrease is smaller than for ethylcyclohexane (figure 1 *right*) caused by the partial solution of alcohol molecules in the non-polar ethylbenzene phase.

Table 1: Slopes and corresponding errors for the correlation between the domain size ξ and the alcohol to alcohol and D₂O weight fraction ψ for the systems D₂O/alcohol – ethylbenzene – C₁₀E₇ and D₂O/alcohol – ethylcyclohexane – C₁₀E₅ at a constant D₂O to oil and D₂O volume fraction $\phi = 0.50$.

	ethylbo	enzene	ethylcyclohexane			
alcohol	<i>m</i> [Å]	∆ <i>m</i> [Å]	<i>m</i> [Å]	∆ <i>m</i> [Å]		
methanol	-524	25	-577	8		
ethanol	-804	34	-944	8		
1-propanol	-1248	82	-1328	124		
1-butanol	-	-	-1960	0		

At a constant surfactant to the overall mass weight fraction γ the surface-per-volume fraction S/V in the system D₂O/methanol – ethylbenzene – C₁₀E₇ is unchanged with increasing methanol content whereas for D₂O/methanol – ethylcyclohexane – C₁₀E₅ S/V is decreased.

	ethylbenzene					ethylcyclohexane						
Ψ	methanol		ethanol		methanol		ethanol					
	$\gamma = 0.135$		$\gamma = 0.135$		$\gamma = 0.120$		$\gamma = 0.110$					
	<i>S</i> / <i>V</i> [Å ⁻¹]	ξ[Å]	$d_{TS}[\AA]$	S/V [Å ⁻¹]	ξ[Å]	$d_{TS}[\AA]$	S/V [Å ⁻¹]	ξ[Å]	$d_{TS}[\text{\AA}]$	S/V [Å ⁻¹]	ξ[Å]	$d_{ extsf{TS}}$ [Å]
0.00	0.01054	217	496	0.01054	217	496	0.01321	352	185	0.01272	201	393
0.05	0.01054	199	490	0.01054	187	496	0.01274	355	183	0.01241	183	395
0.10	0.01054	175	480	0.01054	160	507	0.01203	364	174	-	-	-

Table 2: Surface-per-volume fraction *S/V*, domain size ξ and periodicity d_{TS} of the systems D₂O/alcohol – ethylbenzene – C₁₀E₇ and D₂O/alcohol – ethylcyclohexane – C₁₀E₅ at a constant D₂O to oil and D₂O volume fraction $\phi = 0.50$ and a constant surfactant to the overall mass weight fraction γ .

With increasing alcohol content the system shifts more and more to its \tilde{X} -point where *S/V* reaches a minimum according to the system with ethylcyclohexane. In case of ethylbenzene *S/V* remains unchanged which validates that methanol acts as a co-surfactant due to that more internal interface needs to be generated and therefore the nature of an alcohol depends on the polarity difference between the polar and non-polar phase. The same effect could be observed by exchanging methanol with ethanol. Additionally, the domain size ξ in the systems with ethylbenzene is getting smaller with increasing alcohol content, whereas in the systems with ethylcyclohexane ξ increases, which correlates with the evolution of *S/V*.

Also contrast experiments in the microemulsion system H_2O /methanol- d_4 – ethylbenzene – $C_{10}E_7$ were performed, but the fit-model is still unclear. While all compounds except the alcohol are matched, a clear scattering pattern can be seen. This almost droplike pattern clearly proves that the alcohol aggregates and is part of the interface.

Figure 2: Scattering curve of the system H_2O /methanol- d_4 – ethylbenzene – $C_{10}E_7$.

Literature: [1] M. Kahlweit, R. Strey, Angew Chem Int Ed Engl, 1985, 24, 654-668.

- [2] M. Kahlweit, R. Strey, et al., J Phys Chem, 1991, 95, 5344-5352.
- [3] R. Strey, M. Jonströmer, J Phys Chem, 1992, 96, 4537-4542.
 - [4] M. Teuber, R. Strey, J Phys Chem, 1987, 87, 3195-3200.
 - [5] G. Porod, in: Small Angle X-Ray Scattering; O. Glatter; O. Kratky, 1982.