Experimental report **Proposal:** 9-10-1607 Council: 4/2019 **Title:** New lubricant additives based on cylindrical reversed micelles Research area: Chemistry This proposal is a new proposal Main proposer: Julian EASTOE **Experimental team:** Ilona SERAFIN ADHIP RAHMAN Beatrice CATTOZ Georgina MOODY **Local contacts:** Sylvain PREVOST **Samples:** water-surfactants-hydrotropes-cyclohexane | Instrument | Requested days | Allocated days | From | To | |------------|----------------|----------------|------------|------------| | D11 | 2 | 2 | 10/02/2020 | 12/02/2020 | | D22 | 2 | 0 | | | | D33 | 2 | 0 | | | ## Abstract: Contrast variation SANS will be used to study structures of reversed micelles in cyclohexane, and in particular to reveal effects of hydrotrope addition for promotion and growth of cylindrical micellar aggregates. This equilibrium study represents the first stage of a broader project, which will involve future high pressure/temperature and shear experiments, aimed at understanding the recently discovered role of reversed micelles as lubricants1. The new results will allow to: a) identify and quantify the initial micellar structures, b) understand the formation of long flexible wormlike reverse micelles and c) help guide design of new highly efficient lubricants that have potential to improve friction and wear and to reduce CO2 emissions from combustion engines. This is the first stage in a new 3.5-year PhD program to develop optimized lubricant oils, and Georgina Moody is a 1st year PhD student, fully funded by the lubricant additive company Infineum. Title: New lubricant additives based on cylindrical reversed micelles Instrument: D11 Dates: 10/02/2020 - 12/02/2020 (2 days) ## **UPDATED REPORT (08/02/2021)** Car engine lubricants are composed of a variety of additives, specially formulated to maximise mechanical power efficiency. Friction modifiers are a type of additive that consists of polymers and surfactants. As reverse micelles in oily media are known to aid with the lubrication of the oil, the question which has underpinned this investigation is whether the shape of the micelle impacts friction reduction (i.e. does having spherical or cylindrical/wormlike micelles make the difference). This experiment aimed to build upon the systems we had developed at ISIS Neutron & Muon Source in November 2019 on the instrument Larmor (RB1920023) to collate together a library of micellar systems with varying shapes and lengths which could be tuned through a variety of factors. These factors include changing the surfactant type i.e. using cationic/anionic/zwitterionic surfactants, changing the water content within the system ($w = [H_2O]/[surfactant] = 5$ or 10 gave micellar structural changes), or by adding in an additional amphiphilic species known as hydrotropes (x = [Hydrotrope]/[Surfactant] typically x = 0.1). The experiment **RB1920023** built upon the effect of changing the x value of the same hydrotrope (Sodium 4-ethylbenzoate) from 0.1 - 0.3. However, this experiment on D11 focused upon the effect of altering the alkyl length of the hydrotropes used. **Table 1** outlines the structures of the hydrotropes, and surfactants used. Two concentrations were also studied (50mM and 100mM), as well as the two w values 5 and 10. | Surfactant/hydrotrope structure | Name | |---|--| | ONa | Sodium 4-ethylbenzoate (Na-C2) | | OONa | Sodium 4-butylbenzoate (Na-C4) | | OONa | Sodium 4-hexylbenzoate (Na-C6) | | ONa | Sodium 4-octylbenzoate (Na-C8) | | \bar{so}_3 | NaAOT | | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | M ²⁺ (AOT) ₂ where M = Co, Ni, Mg. Divalent metal AOT surfactant | | $CH_2(CH_2)_{10}CH_3$ H_3C H_3C H_3C H_3C H_3C $H_2(CH_2)_{10}CH_3$ | Didodecyldimethylammonium bromide (DDAB) | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | Lecithin | Table 1: Surfactant structures and names used in this experiment. Fitting of the SANS data is currently underway, a selection of example spectra are shown in Table 2. The main results gleaned from them so far is that: - For the cases involving anionic surfactant $(M^{2+}(AOT)_2)$ /anionic hydrotrope, there is an increase of cylindrical length from x = 0 to x = 0.1 no matter on what alkyl length the hydrotrope possesses (This is by comparing with results from **RB1920023**.) - Cationic surfactant (DDAB)/anionic hydrotropes show a stepwise decrease in cylindrical length as hydrotrope alkyl length increases. - There does not seem to be a clear trend when combining the zwitterionic surfactant lecithin with the anionic hydrotropes, although a more indepth investigation is needed. - Changing the w value from 5 to 10 increases the radius but decreases the cylindrical length. - Although some SANS profiles do not show any obvious changes of cylindrical length as different hydrotropes are added, this may need to be fully confirmed through data fitting. Table 2: A selection of SANS profiles for a variety of surfactants, concentrations, and w values. Each SANS profile shows effect of adding in a hydrotrope of increasing alkyl length [all at x = 0.1]. In many cases, there may not be a clear trend relating hydrotrope alkyl length to cylindrical length, these results will add into the matrix of surfactant systems in which we can carefully select systems for further study. These results will be put towards a PhD thesis chapter, communicated back to my PhD sponsors Infineum UK Ltd as well as to Prof P. Camp (University of Edinburgh) for use in Molecular Dynamics modelling of micelles in lubricants. Future work involves possibly looking into the effect of using cationic hydrotropes instead of anionic hydrotropes to resolve the possible headgroup interactions occurring between the surfactants and hydrotropes. The library of systems we are generating can then allow for selectively choosing systems of various lengths and micellar types to study effects of shear (so as to attempt to answer the initial question above of micellar shape affecting friction reduction). This will be done through methods in lab (rheology, equipment provided by Infineum), and potentially with future neutron scattering (RheoSANS, and a custom tribometer build by Prof A. Routh and his group at the University of Cambridge). ## **UPDATE 08/02/2021:** Since submitting this report, extensive SANS data analysis has been carried out, combining the results from this experiment and the Larmor experiment (RB1920023). The combination has equated to approximately 130 SANS spectras. All of which have had Guinier, Porod, and SasView analysis carried out. Snapshots of this collated library of samples are shown at the end of this document. When fitting each sample in SasView, great care was taken to ensure that each SANS profile had the correct model fitted. To do this, various models were trial fitted before the end selection. This was carried out for each SANS spectra, but two examples have been selected to showcase this: Figure 1: Examples of how the correct model was selected when analysing the SANS data. a) 100mM Mg(AOT)₂, w = 10, x = 0, R = 25 Å, L = 200 Å. b) 100mM Ni(AOT)₂, w = 5, x = 0.1 of sodium 4-ethylbenzoate (Na-C2) As is shown by spectra **a)** and **b)**, the selection of model fit for the SANS profiles is important. E.g. **a)** $Mg(AOT)_2$ was initially attempted to be fitted with a spherical model before a rigid rod model was applied, which gave a much closer fit. Similarly **b)** $Ni(AOT)_2$ in this example was initially fitted with a rigid rod model before it became apparent that this system benefitted from the added parameter of Kuhn length that made up the flexible cylinder model. - NaAOT saw a spherical → cylindrical micellar transition as the amount of hydrotrope added to the system was increased from 0 to 0.3 - DDAB saw a shortening of micellar length e.g. 288 Å to 155 Å (100mM DDAB, w = 5) when x was increased from 0.1 to 0.3. DDAB also saw that by increasing the alkyl length i.e. x = 0.1 of Na-C2 to Na-C8 for 100mM DDAB, w = 5, L decreased from 350 Å to 170 Å. - Mg(AOT)₂ saw an increase in flexibility as hyrotrope was added in i.e. the rigid model shifted to flexible cylinders when going from x = 0 to 0.1. Increasing the hydrotrope alkyl length that was doped in did not seem to have an effect upon the micellar length. - Ni(AOT)₂ and Co(AOT)₂ all existed as flexible cylinders as this model was the only model that would fit these. Increasing x i.e from 0 to 0.3 decreased the length of Ni(AOT)₂ i.e. for 100mM Ni(AOT)₂, w = 5, from 2500 Å to 1390 Å. Whereas for Co(AOT)₂ there was no affect upon the micellar lengths. | 0.10 0 | M
0.05 | w value
0.00 5.00 | 10.00 | Hyd
Na-Ca | frotrope
2 Na-C4 | Na-C6 | Na-C8 | 0.00 | 0.10 | value
0.20 | 0.30 | B. | DISPER
uinier
Reside | Porod
R, | a, (A ²)
38.945 | N | Model
B _{ra} F | ol le | Sca ₆₁ | Guir | DYLINDI
nier
B _{esteto} , | Rigid | cylinder
L | Sca | Sca _{ss} | a ₄ (A ²) | N _{ess} | Gui | BLE CY
inier
Russin | Flexible
B _{en} | e cylinder
Kuhn | L | Sca., | |--|---|---|---|--|---------------------------------------|---|---|---------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|----------------|----------------------------|-------------|--------------------------------|--------|----------------------------|---------|--------------------
--|--|--|--|---|---|----------------------------------|-------------------|---|--|---|---|--|--| | Ž. | | 7 | | · · | | | | V | V | - | | 25.86 | 33.38 | 29.877 | 38.945 | 200.06 | 24.90 0 | 2 0.050 | 0.0511 | | | | | 0.0516 | 0.05264 | | | 60.00 | | | | 2000.00 | 0.0524 | | 1 | | * | · · | | | | | · · | | 1 | 4 | 28.22
28.32 | 36.44 | 32.266 | 59.231
32.266 | 170.47 | 28.35 C
29.36 C | 2 0.058 | 0.06456
0.06346 | | | | | | | | | 15.08 | 21.32 | 20.23
19.62 | 221.06
182.32 | 2900.00
3000.00 | 0.0531
0.0547 | | 4 | | | 4 | 1 | | | | | · · | | | 28.32 | 36.56 | 32.266 | 32.266 | 137.17 | 29.36 0 | 2 0.060 | 0.06346 | | | | | | | | | 19.69
19.04 | 27.85
26.92 | 22.78
23.53 | 750.00
179.02 | 1500.00
2100.00 | 0.0616 | | • | · · | · · | | | | | | | V | | Ť | 23.56 | 30.42 | 27.664 | 67.129 | 106.28 | 23.83 0 | 2 0.024 | 0.02595 | 16.20 | 22.91 | 18.87 | 135.77 | 0.025 | 0.02653
0.04165 | 62.98 | 255.60
1651.15 | 10.04 | 20.32 | 23.03 | 175.02 | 2100.00 | 0.0631 | | - | | · · | | 1 | | | | | V | - | | | | | | | | | | 15.03 | 2126 | 23.74 | 333.84 | 0.0487 | 0.04165 | 30.16 | 1651.15 | 17.22
15.588 | 20.23
22.045 | 22.24
18.103 | 75.21
21.403 | 7046.60
81183 | 0.0501
0.0514 | | V V V V V V V V V V V V V V V V V V V | | 7 | 1 | - 1 | | | | _ | | | · · | | | | | | | | | 18.99 | 26.86 | 25.61
29.63 | 200.00 | 0.0563 | 0.05662 | 38.01 | 846.66 | 17.469 | 24.705 | 20.912 | 52.691 | 6500 | 0.0528 | | 1 | | | · / | 1 | | | | | · · | - | | | | | | | | | | 23.97 | 33.89 | 29.63 | 1000.00 | 0.0577 | 0.05057 | 24.68 | 7544.24 | 27.48
25.18 | 38.87
35.61 | 28.00
21.64 | 106.58
39.84 | 1500.00
5000.00 | 0.05907
0.0604 | | | 1 | * | | | | | | · | 1 | | | | | | | | | | | 18.08 | 25.56 | 23.01 | 491.37 | 0.0248 | 0.02151 | 39.49 | 1799.06 | 16.76 | | | | 20000+ | 0.0256 | | | v / | · · | / | - 1 | | | | | | - | · · | | | | | | | | | 18.34 | 25.94 | 24.36 | 300.00 | 0.0287 | 0.03199 | 63.38 | 724.42 | 16.84
16.61 | 23.71
23.82
23.49 | | | | 0.0263
0.02700 | | | 1 | | · / | 1 | | | | | · · | | | | | | | | | | | | 20.01 | 21.00 | 00000 | 0.0201 | 0.0000 | 00.00 | 121.12 | 24.42
28.219
19.199 | 34.54
39.908
27.152 | 30.68
30.741
20.599 | 246.25
140.97
33.722 | 4351.90
4000
10942 | 0.0295
0.0302
0.0309 | | 1 | · | · · | V | - 1 | - | | | | · · | | · · | | | | | | | | | 14.31 | 20.24 | 15.73 | 200.00 | 0.0503 | 0.04964 | | | 19.199 | 27.152
22.908 | 20.599 | 33.722
69.517 | 10942
4586 | 0.0309 | | 1 | | 4 | | | | · | | | V | | | | | | | | | | | 14.54
19.91 | 20.56
28.16 | 16.53
22.78 | 350.00
2924.10 | 0.0505 | 0.09000 | | | | | | | | | | * | | | 1 | - 1 | / | , | | | V | | | | | | | | | | | 24.333
18.71 | 34.412
26.46 | 26.207
16.30 | 700.00 | 0.0577 | 0.06 | | | | | | | | | | 4 | v . | · · | ¥ | - | | | 4 | | V | | | | | | | | | | | 14.31
14.54
19.91
24.333
18.71
20.10
21.118
11.454
14.178
14.103
14.35 | 20.24
20.56
28.16
34.412
26.46
28.42
29.865
16.198
20.051
19.944
20.29 | 15.73
16.53
22.78
26.207
16.30
24.61
24.183
18.499
15.892
16.104
16.32 | 550
25.236 | 0.0584
0.0256 | 0.04964
0.09000
0.03896
0.06
0.03338
0.06129
0.0572
0.0048
0.03018
0.03338 | | | | | | | | | | | <u> </u> | * | | | - | 1 | | | V | | | | | | | | | | | 14,178
14,103
14,35 | 20.051
19.944
20.29 | 15.892
16.104
16.32 | 900
800 00 | 0.0257 | 0.03018
0.0348
0.03338 | | | | | | | | | | | V . | | V . | - 1 | - | | | | V | | | | | | | | | | | | | 10.04 | | | | | | 18.37
17.788 | 25.98
25.156 | 23.29
22.845 | 101.24
120.88 | 6000.00
12000 | 0.0295
0.0296 | | | 7 | | · / | | | · | 4 | | Ý | | | | | | | | | | | | | | | | | | | 17.854
18.015
16.35 | 25.477
25.477
23.12 | 23,393 | 304.95
72.03 | 4067
2500.00 | 0.02980 | | 7 | | 1 | | 1 | | | | | V | - | | | | | | | | | | | | | | | | | | 16.639
16.555 | 23.53 | 21.215 | 150.32
230.77 | 2100+
1500+ | 0.0295
0.0296
0.0297
0.02980
0.05
0.0514
0.05280
0.0542
0.0557
0.0591
0.0604
0.0618
0.0256
0.0263 | | · · · · · · · · · · · · · · · · · · · | | | V V | - | | | | · · | - | | · · | | | | | | | | | | | | | | | | | 16:276
20:055
19:601 | 28.362
27.72 | 20.684
25.115
24.955 | 347.93
107.24
150.7 | 6000.00
12000
6000
4007
2500.00
2100-
1500-
1500-
1391-
2350
1400-
2350
1400-
20000-
5000-
3500-
2600
2600
2600
2600
2600
2600
2600
2 | 0.0542
0.0577
0.0591 | | 1 | | | V | - 7 | | | | | | - | - | | | | | | | | | | | | | | | | | 20.143
19.636 | 28.486
27.77 | 25.792
25.326 | 255.63
264.21 | 1808.7
1500 | 0.0604
0.0618 | | | · · | · · | | 1 | | | | | V | - | | | | | | | | | | | | | | | | | | 16.212
16.528 | 23.318 | 21.26 | 111.83 | 5000+
3500+ | 0.027 | | | 1 | · · | 1 | 1 | | | | · | | | · / | | | | | | | | | | | | | | | | | 16.103
17.252 | 22.774 | 20.739
25.488 | 194.5
110.58 | 2600
20000+ | 0.0263
0.027
0.0277
0.0294
0.0302 | | | · · | | · · | - ; | | | | | | · · | - | | | | | | | | | | | | | | | | | 20.298 | 28.706
26.816 | 25.981
25.17 | 122.73
121.33 | 5519.1
6034.3 | 0.0302 | | 4 | | V | | - 1 | - | _ | | | V | | | | | | | | | | | | | | | | | | | 14.544
15.974 | 20.568 | 18.882
20.96 | 128.91 | 8916.4
1500+ | 0.0514
0.0516 | | 7 | | 7 | / | - | | | - | | · · | | | | | | | | | | | |
| | | | | | | 14.319 | 20.249 | 18.304 | 254.86
111,8 | 600
2899.4 | 0.0519
0.0521
0.0591
0.0593
0.05950 | | 4 | | | V | | 1 | · | , | | V | | | | | | | | | | | | | | | | | | | 19.874
20.593 | 28.106 | 24.084
25.036 | 143.04 | 2681.8
6032 | 0.0593 | | • | · - | · · | Ť | - | 1 | | | | V | | | | | | | | | | | | | | | | | | | 14.132
20.725 | 19.986 | 18.408
26.032 | 153.19
117.12 | 1300
24456 | 0.0597
0.0263
0.0264
0.0265 | | | V . | V | , | | | · | · | | V | | | | | | | | | | | | | | | | | | | 15.783
19.444 | 22.32 | 24.655 | 98.206
86.844 | 20000 | 0.0265
0.0266
0.0302
0.0303 | | | * | | · / | | 1 | ✓ | | | V | | | | | | | | | | | | | | | | | | | 24.474
18.735 | 34.611
26.495 | 29.687
23.599 | 10124
100.88
237.43
72.00
104.95
150.32
200.77
255.63
264.21
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1
163.1 | 10091
21146 | 0.0303
0.0304 | | | Y | | | | | | | | · · | | | | | | | | | | | | | | | | | | | 18.735 | 26,495 | 23,599 | /6.42 | 21146 | 0.0304 | | * | | | | _ | | | | · · | / | | | | | | | | | | | | | | | | | | | 16.45
23.73 | 23.26
23.73 | 21.16
21.33 | 80.82
182.72 | 2000.00
1800.00 | 0.0304
0.0305
0.0501
0.05150
0.0529
0.0542
0.0578 | | · · | | V | | ✓ | | | | - | | - | - | | | | | | | | | | | | | | | | | 17.29
17.02
21103 | 24.452
24.067
29.844 | 22,494
21,959
29,369 | 224.05
261.67
122.4 | 2240
2000
1639 | 0.0529
0.0542
0.0578 | | V
V
V | | | ✓ | V | | | | | - | | | | | | | | | | | | | | | | | | | 20,335 | 28.758 | 25.627
25.608 | 197.75
285.13 | 1643.9
1718.8 | 0.0591
0.0605
0.0619
0.02560 | | | | | V V | · · · | | | | | | ✓ | | | | | | | | | | | | | | | | | | 19.933 | | | | | | | · | · · | ż | V V | · · · · · · · · · · · · · · · · · · · | | | | | | - | - | | | | | | | | | | | | | | | | | 19.933
19.632
16.08
15.987 | 27.763
22.741
22.609 | 25.64
20.889
20.925 | 273.1
72.127
140.5 | 19652
3700+ | 0.02560 | | 7 | V
V
V | V V | v v v | · · · · · · · · · · · · · · · · · · · | | | | | | · | | | | | | | | | | | | | | | | | | 19.933
19.632
16.08
15.987
16.484
16.483 | 27.763
22.741
22.609
23.312
23.31 | 25.64
20.889
20.925
21.525
21.587 | 76.42
88.738
80.82
182.72
224.05
261.67
122.4
197.75
285.13
273.1
72.127
140.5
148.66
162.32 | 3700+
3322.6
5000 | 0.0263 | | | V V V V V V V V V V V V V V V V V V V | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | V V V V V V V V V V V V V V V V V V V | | | | | | · · | , | | | | | | | | | 20.56 | 29.07 | 29.50 | 40.05 | 0.03020 | 0.02741 | 41.46 | 179.03 | 19.7/sb
19.894
16.45
23.73
17.29
21.103
20.335
19.933
19.632
16.08
15.987
16.484
16.483
18.602 | 27.763
22.741
22.609
23.312
23.31
30.693
27.04 | 23,599
24,3
21,16
21,33
22,494
21,953
29,369
25,627
25,608
25,64
20,889
20,925
21,525
21,525
21,527
23,014 | 273.1
72.127
140.5
148.66
162.32
39.856 | 12000+ | 0.027
0.027
0.0278
0.0295 | | | V V V V V V V V V V V V V V V V V V V | , , , , , , , , , , , , , , , , , , , | · · · · · · · · · · · · · · · · · · · | V V V V V V V V V V V V V V V V V V V | | | | , | · · | * | · · | | | | | | | | | 20.56 | 29.07 | 29.50 | 40.05 | 0.03020 | 0.02741 | 41.46 | 179.03 | 19.933
19.632
16.08
15.987
16.484
16.483
18.602
19.12
19.542
14.969 | 27.763
22.741
22.609
23.312
23.31
30.693
27.04
27.636
21.169 | 25.64
20.889
20.925
21.525
21.587
23.014
24.49
25.487
18.769 | 273.1
72.127
140.5
148.66
162.32
39.856
117.28
119.36
205.14 | 12000+ | 0.027
0.027
0.0278
0.0295 | | · · · · · · · · · · · · · · · · · · · | V V V V V V V V V V V V V V V V V V V | * | · · · · · · · · · · · · · · · · · · · | V V V V V V V V V V V V V V V V V V V | ~ | · | · | ~ | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | | | | | | | | | 20.56 | 29.07 | 29.50 | 40.05 | 0.03020 | 0.02741 | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175 | 27.04
27.636
21.169
23.864
22.381 | 24.49
25.487
18.769
21.841
19.147 | 117.28
119.36
205.14
360
350 | 5931.30
6219.4
675
6000
700 | 0.0263
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | *** | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · | · | × | ~ | · · · · · · · · · · · · · · · · · · · | · | * | | | | | | | | | 20.56 | 29.07 | 29.50 | 40.05 | 0.03020 | 0.02741 | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175 | 27.04
27.636
21.169
23.864
22.381 | 24.49
25.487
18.769
21.841
19.147 | 117.28
119.36
205.14
360
350 | 12000+
5931.30
6219.4
675
6000
700 | 0.0278
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052 | | V V V V V V V V V V V V V V V V V V V | · · · · · · · · · · · · · · · · · · · | · · · | · · · · · · · · · · · · · · · · · · · | V V V V V V V V V V V V V V V V V V V | · · | · | · · | ~ | · · · · · · · · · · · · · · · · · · · | · | * | | | | | | | | | 20.56 | 29.07 | 29.50 | 40.05 | 0.03020 | 0.02741 | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175 | 27.04
27.636
21.169
23.864
22.381 | 24.49
25.487
18.769
21.841
19.147 | 117.28
119.36
205.14
360
350 | 12000+
5931.30
6219.4
675
6000
700 | 0.027
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052 | | · · · · · · · · · · · · · · · · · · · | V V V V V V V V V V V V V V V V V V V | * | , , , , , , , , , , , , , , , , , , , | · · · · · · · · · · · · · · · · · · · | | | · | ~ | · · · · · · · · · · · · · · · · · · · | * | * | | | | | | | | | 20.56 | 29.07 | 29.50 | 40.05 | 0.03020 | 0.02741 | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175 | 27.04
27.636
21.169
23.864
22.381 | 24.49
25.487
18.769
21.841
19.147 | 117.28
119.36
205.14
360
350 | 12000+
5931.30
6219.4
675
6000
700 | 0.027
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052 | | · · · · · · · · · · · · · · · · · · · | V V V V V V V V V V V V V V V V V V V | *** | 7
7
7
7
7
7
7
7
7
7 | · · · · · · · · · · · · · · · · · · · | | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | · | * | | | | | | | | | 20.56 | 29.07 | | | 0.03020 | 0.02741 | 41.46 | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 |
27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | *** | · · · · · · · · · · · · · · · · · · · | * | | · · · · · · · · · · · · · · · · · · · | | | · · · · · · · · · · · · · · · · · · · | ~ | * | | | | | | | | | | | 144.44 | 8,6758 | | | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | · · · · · · · · · · · · · · · · · · · | *************************************** | V V V V V V V V V V V V V V V V V V V | * * * * * * * * * * * * * * * * * * * | * | | · · · · · · · · · · · · · · · · · · · | , | ~ | · · · · · · · · · · · · · · · · · · · | · | | | | | | | | | | | | 144.44 | 8,6758 | | | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0591
0.0594
0.0596
0.05980
0.0263
0.0266
0.02667
0.02667 | | V V V V V V V V V V V V V V V V V V V | · · · · · · · · · · · · · · · · · · · | , | Y | · · · · · · · · · · · · · · · · · · · | ~ | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | ~ | · · · · · · · · · · · · · · · · · · · | · | * | | | | | | | | | | | 144.44 | 8,6758 | 0.0476
0.0474
0.0481
0.0481 | 0.02741
0.023
0.0262
0.0238
0.0196 | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0591
0.0594
0.0596
0.05980
0.0263
0.0266
0.02667
0.02667 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | *************************************** | 7
7
7
7
7
7
7
7
7
7
7
7
7 | · · · · · · · · · · · · · · · · · · · | | 7 | , | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | * | | | | | | | | | 15.428
13.786
12.476
14.3739
21.539
38.577
20.577 | 21.82
19.51
420.335
30.46
27.827
29.098 | 144.44
17.36
16.648
15.628
18.239
29.88
27
25.097 | 8,6758 | 0.0476
0.0474
0.0481
0.0495
0.0544
0.0554 | 0.02741
0.023
0.0262
0.0238
0.0196 | 4146 | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0591
0.0594
0.0596
0.05980
0.0263
0.0266
0.02667
0.02667 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | *** | 7 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | , | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | * | | | | | | | | | | 21.82
19.51
420.335
30.46
27.827
29.098 | 144.44
17.36
16.648
15.628
18.239
29.88
27
25.097 | 8.6758
4522.10
288.87
172.05
155
57.32
65
57.613 | 0.0476
0.0474
0.0481
0.0495
0.0544
0.0554 | 0.02741
0.023
0.0262
0.0238
0.0196 | 4146 | 179,03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0591
0.0594
0.0596
0.05980
0.0263
0.0266
0.02667
0.02667 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | *************************************** | 7
7
7
7
7
7
7
7
7
7
7
7 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | | | | | | | | 21.82
19.51
420.335
30.46
27.827
29.098 | 144.44
17.36
16.648
15.628
18.239
29.88
27
25.097 | 8.6758
4522.10
288.87
172.05
155
57.32
65
57.613 | 0.0476
0.0474
0.0481
0.0495
0.0544
0.0554 | 0.02741
0.023
0.0262
0.0238
0.0196 | 41.48 | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | *************************************** | 7
7
7
7
7
7
7
7
7
7
7
7
7 | ************************************** | · · · · · · · · · · · · · · · · · · · | 7 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0544
0.0558
0.0571
0.05950 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 |
24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | ************************************** | · · · · · · · · · · · · · · · · · · · | 7 | <i>y y y y y y y y y y</i> | | | | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | V V V V V V V V V V V V V V V V V V V | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | | · · · · · · · · · · · · · · · · · · · | , | <i>y y y y y y y y y y</i> | | · · · · · · · · · · · · · · · · · · · | | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 179.03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.027
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0591
0.0594
0.0596
0.05980
0.0263
0.0266
0.02667
0.02667 | | ************************************** | V V V V V V V V V V V V V V V V V V V | | ************************************** | ************************************** | v v v v v v v v v v v v v v v v v v v | 7 | · · · · · · · · · · · · · · · · · · · | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 17393 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | V V V V V V V V V V V V V V V V V V V | V V V V V V V V V V V V V V V V V V V | | ************************************** | ************************************** | · · · · · · · · · · · · · · · · · · · | 7 | 7
7
7
7 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 17989 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | ************************************** | V V V V V V V V V V V V V V V V V V V | | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | | 7
7
7
7 | 7 | 7
7
7
7 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 179/03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0515
0.0517
0.052
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.0303 | | ************************************** | V V V V V V V V V V V V V V V V V V V | | ************************************** | ************************************** | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | · · · · · · · · · · · · · · · · · · · | 7 | , | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 173,03 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.0278 0.0278 0.0278 0.0295 0.0309 0.0316 0.0517 0.052 0.0591 0.0594 0.0594 0.0596 0.0263 0.0264 0.0266 0.02667 0.0302 | | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
| V V V V V V V V V V V V V V V V V V V | | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | | · · · · · · · · · · · · · · · · · · · | 7 | 7
7
7 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 17303 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0517
0.052
0.0591
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.02667
0.0302 | | 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 | V V V V V V V V V V V V V V V V V V V | | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | ~ | · · · · · · · · · · · · · · · · · · · | | * | | | | | | | | | 15.428
13.736
12.476
14.373
15.677
20.575
20.537 | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0258
0.0196
0.0199
0.0199 | | 17203 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0517
0.052
0.0591
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.02667
0.0302 | | ************************************** | V V V V V V V V V V V V V V V V V V V | | Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y | | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | 7
7
7
7
7
7
7 | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | * | | | | | | | | | | 21.82
19.51
17.644
30.46
27.827
29.038
29.043 | 144.44
17.36
16.648
15.629
29.88
27
25.097
25.013 | 8.6758
4522.10
288.67
172.05
57.32
56
57.613
54.379 | 0.0476
0.0474
0.0481
0.0548
0.0558
0.0571
0.05850 | 0.02741
0.023
0.0262
0.0238
0.0196 | | 17203 | 19.12
19.542
14.969
16.874
14.175
18.71
19.496
18.563
17.711
15.826
23.112
14.569
14.619 | 27.04
27.636
21.169
23.864
22.381
26.46
27.571
26.253
25.047
32.685
20.604
20.673
27.054 | 24.49
25.487
18.768
21.841
19.147
23.51
25.118
23.121
22.774
22.381
32.685
19.305
18.729
24.517
32.927 | 117.28
119.36
205.14
360
350
141.83
121.13
142.06
115.81
200
189.31
300
130.28
89.9 | 12000-
5931.30
6219.4
675
6000
700
2994.40
3051.9
2825.1
3534.5
10000
22731
750
890
4459 | 0.027
0.0278
0.0278
0.0295
0.0309
0.0316
0.0517
0.052
0.0591
0.0594
0.0594
0.0596
0.0263
0.0264
0.0266
0.02667
0.02667
0.0302 |