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Abstract:

We intend to study the selective adsorption of polymers onto Imogolite nanotubes (INT). Recently, the use of nanotubular clays received

an outburst in literature due to the improvement of the properties of the materials and the possibility to load and release molecules for

specific  application.  We  recently  succeeded  in  forming  stable  INT  dispersions  in  water  and  the  polymer  adsorption  was  strongly

dependent on the polymer molecular weight. The structure of these dispersions is of essential interest for the understanding of the hybrid

nanocomposites obtained and their anisotropic orientation induced by excluded volume or depletion effects. These aspects are strategic

for potential applications of the dispersions themselves.
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Imogolite nanotube (INT) is an aluminosilicate clay mineral, 

naturally occurring and widespread in well-drained volcanic 

ash soils.1 Unlike halloysite, another tubular clay mineral,2 

INTs can be readily synthesized through hydrothermal meth-

ods.3 The structure of these nanotubes is rather unique. The ex-

ternal walls consist of gibbsite-like sheet Al(OH)3 while the 

cavity interface is formed by isolated (SiO3)OH tetrahedron 

units connected upright to the octahedral vacancies by covalent 

bonding.4 Silicon can be replaced by germanium allowing to in-

crease the diameter of the inner cavity from 1.5 to 3 nm for sin-

gle-walled INTs.5,6 Furthermore, modifications of the synthesis 

conditions offer a convenient way for designing innovative 

INTs with well-defined morphologies (single or double-walled 

structures),7 modular interfaces (e.g. hydrophilic or hydropho-

bic cavities)8–10 and high colloidal stability in aqueous media.11–

13 All these properties have led in recent years to a renewed in-

terest in synthetic imogolite-type nanotubes as promising nano-

reactors notably for molecular confinement14–17 or photocata-

lytic applications.18–22 

The thermodynamics of the polymer adsorption onto aqueous 

dispersions of Ge-DWINTs was investigated by ITC. The max-

imum amount of PEG molecules adsorbed onto the imogolite 

surface decreases sharply with the polymer molecular weight. 

The dependence of the affinity toward the Ge-DWINTs surface 

from the PEG molecular weight was further investigated by 

SANS for PEG2k and PEG20k. It should be noted that the scat-

tering from dilute Ge-DWINTs dispersions (1 g.L-1) in the same 

solvent has a negligible flat scattering intensity in the investi-

gated scattering vector regime As a general feature (Figure 4), 

the addition of Ge-DWINTs to PEG solutions does not influ-

ence the shape of the curves. For PEG2k, only a minor increase 

in the overall scattering intensity is observed, indicating that 

Ge-DWINTs induce a clustering of the polymer chains due to 

the adsorption on the nanotube surface but it makes no differ-

ence on the polymer conformation. (Figure S1 in Supporting 

Information). This result confirms the prediction from ITC data 

that more than 60% of the polymer is not adsorbed onto the Ge-

DWINT surface under these conditions (Figure 4b). Con-

versely, for PEG20k/Ge-DWINTs complexes, an increase in 

the scattering intensity is observed related to the adsorption of 

the polymer on the nanotube surface. Furthermore, the decay of 

the scattering intensity is shifted towards smaller q-values, 

which comes from a more extended configuration of the poly-

mer coil induced by the adsorption process (Figure 4a). Going 

further, total scattering intensity was well fitted by the Debye 

equation for a non-interacting random coil,23 providing a radius 

of gyration of 2.5 nm for PEG20k that increases to 2.7 nm and 

3.1 nm in the presence of INTs at RP/INTs =18 and 4, respectively. 

The stretching of the polymer chain is an indication of a rela-

tively compact organization at the solid/liquid interface. This is 

confirmed by the grafting density of ca. 1.6 chains nm-2, esti-

mated from ITC results. It should be noted that the fits of the 

scattering curves for PEG2k provided a radius of gyration of 1.5 

nm with and without Ge-DWINTs in agreement with the ther-

modynamic prediction of negligible interactions in this case. 

 

Figure 4. Neutron Scattering Intensity function after background 

(BKG) subtraction and polymer concentration normalization (CP) 

of PEGs in the presence and absence of Ge-DWINTs (1 g.L-1) at 25 

°C. Solvent was H2O/D2O with a mass ratio of 1/10. 
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