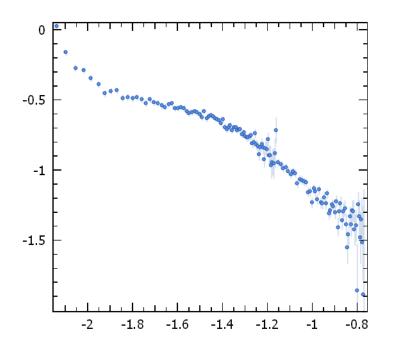
Proposal:	9-13-5	62		Council: 4/2016		
Title:	Structural stability of silk proteins in D2O by SANS					
Research area:	Biolog	у				
This proposal is a	new pr	oposal				
Main proposer	:	Cedric DICKO				
Experimental team		Ann TERRY				
		Imke GREVING				
		Mark TELLING				
Local contacts:		Isabelle GRILLO				
Samples: silk f	ibroin					
Instrument		Requested days	Allocated days	From	То	
D33			1	1	18/11/2014	19/11/2014
				0		

Abstract:

The formation of silk fibres in both spiders and silkworms is characterized by a conversion of short range ordered structures in solution into long range ordered beta-sheet rich structures in the final fibre. For silk we hypothesise that local flexibility of the protein chain will mediate silk protein storage/beta-sheet aggregation. To understand the mechanism we propose to study how concentration affects the local flexibility of silk fibroin both in its reactive (native) state and in a un-natural reconstituted silk fibroin. The results will have an impact on how we control silk storage and stability as well as for other hydrogen bonding polymers and proteins

Report on Experiment 9-13-562 on D33 - Nov 2014


The structural stability of silk proteins in D₂O by SANS

Cedric Dicko¹, Imke Greving¹, Chris Holland², Ann Terry³, Mark Telling³, Fritz Vollrath¹ ¹Dept. of Zoology, University of Oxford, U.K. ²Institut Max von Laue - Paul Langevin, Grenoble, France ³ISIS – Rutherford Appleton Lab, UK

We have carried out the experiment 9-13-562 (D33) on highly concentrated native silk proteins from the *Bombyx mori* silkworm silk species. Our principal aim was to "disperse" the silk in D_2O and investigate the colloidal stability of the exchanged proteins.

Unfortunately, we found that the high concentration silk proteins did aggregate immediately or did aggregate after a few frames.

The figure below shows a typical scattering curve of the silk proteins in D2O.

No further treatment or exploitation of the data.