## **Experimental report**

| Proposal:                       | CRG-2676                                                                                      |                                                                                            |                |                | <b>Council:</b> 4/2019 |            |  |
|---------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------|----------------|------------------------|------------|--|
| Title:                          | Inelastic neutron scattering studyof a neary isolated s=1/2 triangular system KBa3Ca4Cu3V7O28 |                                                                                            |                |                |                        |            |  |
| Research area:                  |                                                                                               |                                                                                            |                |                |                        |            |  |
| This proposal is a new proposal |                                                                                               |                                                                                            |                |                |                        |            |  |
| Main proposer                   | :                                                                                             | Beatrice GRENIER                                                                           |                |                |                        |            |  |
| Experimental t                  | eam:                                                                                          | Lucile MANGIN-THR<br>Beatrice GRENIER<br>Virginie SIMONET<br>Yuji INAGAKI<br>Sylvain PETIT | 20             |                |                        |            |  |
|                                 |                                                                                               | Jean Marc ZANOTTI                                                                          |                |                |                        |            |  |
| Samples: KBa3Ca4Cu3V7O28        |                                                                                               |                                                                                            |                |                |                        |            |  |
| Instrument                      |                                                                                               |                                                                                            | Requested days | Allocated days | From                   | То         |  |
| IN6-SHARP                       |                                                                                               |                                                                                            | 3              | 3              | 23/09/2019             | 26/09/2019 |  |
| Abstract:                       |                                                                                               |                                                                                            |                |                |                        |            |  |

## Scientific context

 $KBa_3Ca_4Cu_3V_7O_{28}$  provides a nice example of quasi-isolated spin 1/2 equilateral triangles, showing magnetic short-range ordering at very low temperature.

Its magnetic susceptibility  $\chi$  is shown in the opposite figure (closed circles). Its inverse (open circles) shows an abrupt kink at  $T \sim 100$  K, between two different linear temperature dependences for  $\chi^{-1}(T)$ , with a factor 3 between their slopes. This result suggests the formation, below this temperature, of a quantum superposition of states with a spin singlet in each Cu<sup>2+</sup> triangle, due to an exchange interaction  $J/k_B \sim 100 - 200$  K. In addition, no magnetic ordering was observed down to 50 mK by specific heat measurements.



From an NMR study, the intradimer exchange interaction would yield two quadruplets states separated by about 15-30 meV, while the lowest quadruplet would be split in two doublets due to a Dzyaloshinskii-Moriya interaction of about 0.1 meV. As a result, the magnetic short-range ordering would correspond to a chiral spin configuration below the corresponding temperature of about 1.1 K.

Two inelastic neutron scattering experiments have been performed, on IN5 (EASY-397) and IN6 (CRG-2676), in order to probe the low energy magnetic excitations. On IN5, only the low temperature has been studied, with several resolutions, while on IN6, the three following temperature regions were explored: below ~ 1 K, between ~1 K and ~ 100 K, then above ~100 K.

Note that another experiment on D7 (5-32-868) has also been performed to look for magnetic short-range correlations.

## **Experimental results**

The present report concerns the experiment on IN6. We performed measurements with the wavelengths  $\lambda$  = 5.12 and 5.92 Å. For the first one we were able to work at 40 mK, 5 K, 30 K, 60 K, 100 K, and 150 K, and for the second one we worked at 40 mK, 800 mK, 1.5 K, and 5 K. The following figures show our results for 20 grams of KBa<sub>3</sub>Ca<sub>4</sub>Cu<sub>3</sub>V<sub>7</sub>O<sub>28</sub> powder sample.



Both figures show the intensity as a function of *Q* for E = 0.2 meV at all measured temperatures, for  $\lambda = 5.12$  Å (left) and  $\lambda = 5.92$  Å (right).

They exhibit a magnetic excitation appearing at base temperature (40 mK) and low Q ( $Q < 0.7 \text{ Å}^{-1}$ ), with a maximum intensity around  $Q = 0.5 \text{ Å}^{-1}$ . These observations are particularly supported by the experiment performed on IN5 (EASY-397).

When heating up, this excitation completely disappears then, from 60 K, a signal with a different shape arises in the same Q-region (see left figure). It is no longer centred around  $Q = 0.5 \text{ Å}^{-1}$  but its intensity increases as Q decreases. Note that its magnitude is the highest at 100 K, corresponding to the temperature at which the inverse susceptibility shows a kink.

These changes of behaviour seem to correspond to the two particular temperatures mentioned above:  $\sim 1$  K and  $\sim 100$  K. Nevertheless, further analysis needs to be carried out to establish the nature of this excitation in each of the two temperature regimes.

Note that the sharp signal appearing around  $Q \sim 0.8 \text{ Å}^{-1}$  is nearly temperature-independent and is thus probably a spurious.