
Experimental report

Proposal:	EASY-745			Council: 4/20	20
Title:	Complete structure solu	ation of a new strontium a	aluminosilicate Sr1	1.05Si1.9 Al0.1 (05
Research area:	Chemistry				
This proposal is a	new proposal				
Main proposer	: MICHAEL PIT	TCHER			
Experimental t	eam:				
Local contacts:	Stanislav SAVV	'IN			
Samples: Sr1.1	3 Si1.87 Al0.13 O5				
Instrument		Requested days	Allocated days	From	То
		4	4	08/02/2021	09/02/2021

We have recently isolated a new metastable strontium aluminosilicate Sr1.05 Si1.9 Al0.1 O5 by a computationally-guided exploration approach. The PXRD pattern is indexed to a primitive monoclinic unit cell (volume \sim 740 A3). We have conducted a partial structure solution in-house using laboratory PXRD: charge flipping and simulated annealing have located the strongly-scattering Sr atom positions with a high degree of certainty, but we have very low precision on the Si and O positions. Neutron diffraction will allow us to locate these sites correctly and complete the structure solution.

Experiment EASY-745 aimed to complete the ab-initio structure solution of a newly-discovered strontium aluminosilicate synthesised by glass-crystallisation, thought at the time of the proposal to be "Sr_{1.05}Si_{1.9}Al_{0.1}O₅". Neutron diffraction data were collected at room temperature from D2B. A Rietveld refinement was used to (i) test an initial structural model originally solved ab-initio from PXRD, (ii) obtain precise atomic coordinates for the oxide sublattice, (iii) verify the presence of additional oxide sites. The final refined structure corresponds to the composition Sr₂Si₃O₈. It is a 1-dimensional structure comprised of infinite [Si₃O₈] ribbons. The shift from the nominal composition "Sr_{1.05}Si_{1.9}Al_{0.1}O₅" results from the presence of residual glass, which contributes broad features to the background of the neutron diffraction patterns, confirmed later by solid state NMR and a series of laboratory powder diffraction experiments using Al₂O₃-spiked samples to quantify the amorphous content, and found to represent ~30 mol% of the sample.

The experiment will be included in the thesis of Euan Duncan (CEMHTI, CNRS UPR3079). It is being prepared for publication as part of a wider exploratory study of computationally-guided synthesis in the SrO-Al₂O₃-SiO₂ phase diagram.

Figure: Rietveld refinement against the obtained D2B data (above), and structural projections of $Sr_2Si_3O_8$ along differet cell axes, highlighting the $[Sr_3O_8]$ infinite ribbons directed along the crystallographic b axis.