Proposal: INTER-421		R-421	Council: 4/2018			18
Title:	Magne	tic structure determination	ationof Ag2Cu2O3			
Research area	ı :					
This proposal is	a new pr	oposal				
Main propose	er:	Clemens RITTER				
Experimental	team:	Clemens RITTER				
Local contact	s:	Clemens RITTER				
	2Cu2O3					
Samples: Ag						
Samples: Ag Instrument			Requested days	Allocated days	From	То

Experimental Report IN-421

Magnetic Structure Determination of the linear chain quantum antiferromagnet Ag₂Cu₂O₃

Cu₄O₃ ('paramelaconite') is a binary copper oxide which is chemically intermediate between Cu₂O ('cuprite')) and CuO ('tenorite'). The crystal structure contains interpenetrating rods of (diamagnetic) Cu⁺ cations forming two collinear bonds with oxygen atoms and (magnetic, S=1/2) Cu²⁺ atoms forming four bonds to oxygen atoms at the corners of a rectangle .[1] The magnetic Cu²⁺ cations form tetrahedra similar to the arrangement in the cubic pyrochlores implying that geometrical frustration plays an essential role for the magnetic properties.[1,2] Preparation of bulk samples (neither powder nor x-tals) of Cu₄O₃ has not been feasible, so far. The magnetic properties (magnetic susceptibility and x-tal neutron diffraction) have therefore been done on a small piece of a natural Cu₄O₃ crystal. The magnetic susceptibility of Cu₄O₃ exhibits typical features of a low dimensional quantum antiferromagnet (afm) with a broad maximum at ~75 K and long-range afm ordering below ~40 K. The magnetic structure determined on the basis of a doubling of the tetragonal unit cell (SG I4₁/amd) in all spatial directions is a commensurate helical-type arrangement of ordered moments of 0.46 $\mu_{\rm B}$ /Cu.[3] A collinear structure gives slightly worse reliability factors. However, published theoretical estimates of the exchange parameters could not explain the magnetic structure of Cu₄O₃.[4]

In contrast to Cu₄O₃, polycrystalline samples of the isotypic Ag₂Cu₂O₃ where the Ag⁺ cations replace the Cu⁺ cations can be prepared in larger quantities. Ag₂Cu₂O₃ exhibits long-range afm order below $T_{\text{Néel}} \sim 65$ K (see Fig. 1a) and similar low-dimensional features as Cu₄O₃.[5,6] From x-ray powder diffraction experiments Uematsu *et al.* conjectured a distortion to a monoclinic structure (SGR *C*2/*c*) being present already at room temperature and showing a stark increase at $T_{\text{Néel}}$.[7]

The experiment on D20 was aimed to determine the magnetic the magnetic structure. We have collected three datasets at 1.5 K, 50 K and 80 K. The datasets at 50 K and 80 K were merged and taken as non-magnetic reference. The datasets were collected for 10 h with an instrument setting giving maximum flux at a wavelength of 2.41 A. In order to obtain lattice parameters at low temperatures a Rietveld refinement of the diffraction collected at 1.5 K with the atom positional parameters fixed to the values we have obtained from a preceding high-resolution experiment on MLZ's powder diffractometer SPODI (see Figure 1).

Using these lattice parameters we indexed Bragg peaks in the difference pattern (1.5 K minus 50+80 K) and derived at a tentative magnetic propagation vector of (0.5, 0.5 ~0.31) indicating an incommensurate magnetic structure perpendicular to the ribbon chains (c-axis in I 1 1 2/b, spgr no. 15). Figure 2 displays the Rietveld refinement of the difference pattern indicating magnetic moments of ~0.5 μ_B and ~0.8 μ_B for the Cu atoms.

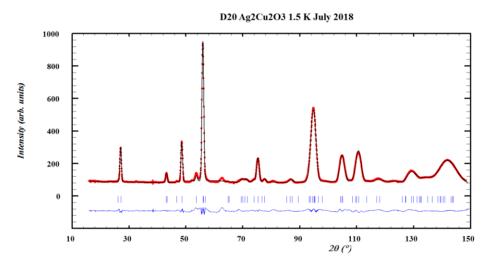


Fig. 1 Rietveld refinement of the neutron powder diffraction pattern collected at 1.5 K at D20 ($\lambda = 2.41$ Å).

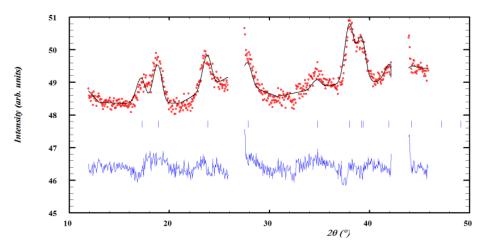


Fig. 2 (red circles) Difference of two NPD patterns of $Ag_2Cu_2O_3$ collected at 1.5 K and 80 K on D20 for 10h each. (black solid line) Tentative refinement of the difference pattern assuming a magnetic propagation vector of ($\frac{1}{2},\frac{1}{2},0.31(1)$). Vertical bars mark the positions of the magnetic Bragg reflections.

In a forthcoming proposal we plan to increase the statistics of our data by significantly enlarging the sample amount (currently ~8000 mg) and possibly increasing the counting time. The current sample was used because it had structurally been characterized in detail earlier from SPODI data.

References:

- [1] M. O'Keefe and J.-O. Bovin, Am. Miner. 63, 180 (1978).
- [2] M. Elhajal, B.Canals and C.Lacroix, J. Phys.: Condens. Matter 16, S917 (2004).
- [3] L. Pinsard-Gaudart, J. Rodríguez-Carvajal, et al., Phys. Rev. B 69, 104408 (2004).
- [4] M. H. Whangbo and H. J. Koo, Inorg. Chem. 41, 3570 (2002).
- [5] E. Tejada-Rosales, J. Rodríguez-Carvajal, et al., Inorg. Chem. 41, 6604 (2002.
- [6] K. Adelsberger, J. Curda, S. Vensky, and M. Jansen, J.Solid State Chem. 158, 82 (2001).
- [7] D. Uematsu, M. Soda, et al., J. Phys. Soc Jpn. 75, 124601 (2006).