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Using a weekend of internal beamtime at the cold-neutron triple-axis spectrometer Thales, we
continued to investigate the separation of the non-reciprocal skyrmion dynamics in MnSi into spin-
flip and non-spin-flip channels and could for the first time resolve the high-energy branches. This
internal experiment and our previous one (see our report 79803 for our first two-day test INTER-
413) serve as a preparation for our proposed ILL experiment and give a foundation for measuring
all the symmetry positions in the various ordered phases of MnSi in the future.

I. BACKGROUND

The itinerant magnet MnSi features a skyrmion or-
der [1] for temperatures in the range T ≈ 28 − 29 K
and for magnetic fields B ≈ 0.16 − 0.21 T. Furthermore,
the non-centrosymmetric P213 space group of MnSi has
profound consequences for spin-wave dynamics in all or-
dered magnetic phases of MnSi. Namely, it introduces a
Dzyaloshinskii-Moriya term which – at reduced momen-
tum transfers parallel to the external magnetic field di-
rection – causes magnons to be either created at different
(absolute) energies than they are annihilated or leads to
different spectral weights for magnon creation compared
to annihilation. The dynamical magnetic structure factor
S (q, E,B) with q = Q − G is thus asymmetric (“non-
reciprocal”) with respect to changing the sign of either
the reduced momentum transfer q‖, the energy transfer
E, or the magnetic field B, but is symmetric upon inter-
changing the signs of two dependent variables [2]. Here,
q‖ refers to the component of the reduced momentum
transfer along the direction of the external magnetic field
B. Such an asymmetric behaviour could be observed for
the field-polarised [3, 4], the paramagnetic [5], the conical
[6], and the skyrmion [2] phase of MnSi.

II. EXPERIMENT

We continued our initial investigation into the separa-
tion into spin-flip and non-spin-flip channels of the non-
reciprocal magnons in the skyrmion phase of MnSi using
the instrument Thales [7]. The measurements were per-
formed in the hk0 scattering plane around the nuclear
G = (110) reflection with the magnetic field oriented
along [110]. In this configuration, the skyrmion plane is
spanned by the [11̄0] and [001] reciprocal vectors and the
hexagonal skyrmion lattice pins along [001].

Our main results are depicted in Figure 1. The left-
hand panel shows the theoretical dispersion branches
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for reduced momenta q‖ transferred parallel to the
[110] field direction, the lines are colour-coded based on
polarisation-dependence. Our collected data confirms the
existence of a strong and a weak low-energy dispersion
branch in the SF+- spin-flip channel (blue), marked (1)
and (2), respectively. High-energy branches labelled (3)
and (4) can be observed in the SF-+ channel (red). The
high-energy branches appear to be slightly shifted from
their predicted energy. The most likely reason is the in-
strumental resolution function picking up additional sig-
nals along the q⊥ and qup directions of the complicated
four-dimensional structure factor S (q, E) for skyrmion
dynamics.

III. CONCLUSION

Preparing for our proposed experiments, we have set
the stage for performing polarised measurements for re-
solving the magnon dynamics in the skyrmion phase
of MnSi. Systematic measurements of the other posi-
tions of high symmetry in the hexagonal magnetic Bril-
louin zone of the skyrmion phase as well as of the other
magnetic phases of MnSi (helimagnetic, conical, field-
polarised, fluctuation-disordered, and paramagnetic) will
be performed as next steps. In our future beamtimes,
we will furthermore resolve the polarisation dependence
for the q directions which yield symmetric and/or quasi-
continuous dispersion relations, some of which have also
proved to be difficult in past unpolarised experiments [8].
Moreover, a full four-dimensional resolution-convolution
data analysis [9] of the measured spectra is currently in
progress, preliminary results are depicted in Fig. 2.
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Figure 1. Left: The theoretical model by M. Garst and J. Waizner shows the non-reciprocal magnon dispersion in the skyrmion
phase. The different polarisation channels are shown as red and blue lines, respectively, with the line width depicting the
spectral weights. Only the SF-+ and SF+- spin-flip channels possess spectral weight, but not the non-spin-flip channel. The
actual dispersion is entirely given by the spectral weights as the allowed energies (shown as fine points) form a quasi-continuum.
Right: Experimental results collected at the position in reciprocal space indicated by the vertical black line in the left panel.
The two spin-flip channels are shown as red and blue points. The solid lines are Gaussian fits and serve as guides to the eye.
For the second test experiment, the magnet was rotated by 180 degrees compared to the first test: all labels have been corrected
accordingly.

(previous test beamtime). Source repository (ILL- internal): https://code.ill.fr/tweber/skx.
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Figure 2. Preliminary four-dimensional instrumental resolution convolution simulations of the theoretical model as given in
Fig. 1 (lines) compared to our main datasets (points). So far, the convolutions have no absolute intensity (i.e. S(Q,E)) scale
and the theory’s energy scale needs a correction deduced from a limiting case of the non-reciprocal helimagnon results [6].
As can be judged from preliminary scans (not shown), the theory begins to slowly deviate from the experimental results for
increasing values of |q|. This possible discrepancy will be resolved in our proposed future beamtimes. The S(Q,E) axes of the
datasets marked with "x2" have been scaled by a factor of two for better visibility.

vertical field were riddled with spurions, namely Bragg
tails emanating from the nuclear elastic peak and its six
magnetic satellites. See e.g. report 67728 for experiment

INTER-286, note that their results were not yet identified
as spurious at the time.

[9] Note2. Using the software Takin: https://github.com/
t-weber/takin.

https://github.com/t-weber/takin
https://github.com/t-weber/takin

