Experimental Report

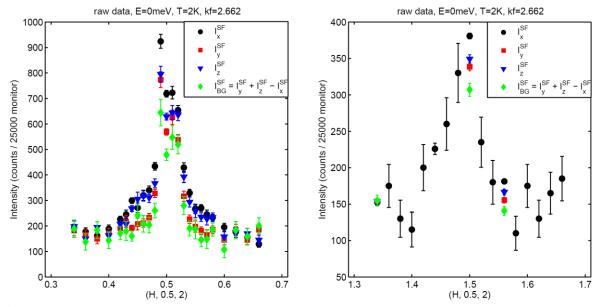
Proposal:	TEST-2327	Council:	10/2012	
Title:	Investigation of unusual spin-density-wave order in YBa2Cu3O6+x with spin-polarized neutrons			
This proposal is a new proposal				
Researh Area:				
Main proposer:	LOEW Toshinao			
Experimental Team: PORRAS PEREZ GUERRERO Juan Pablo				
Local Contact:	IVANOV Alexandre			
Samples:	YBa2Cu3O6.4			
Instrument	Req. Days	All. Days	From	То
IN14	2	2	07/08/2013	09/08/2013
Abstract:				
1				

Experimental report TEST- 2327 (07/08/2013 to 09/08/2013)

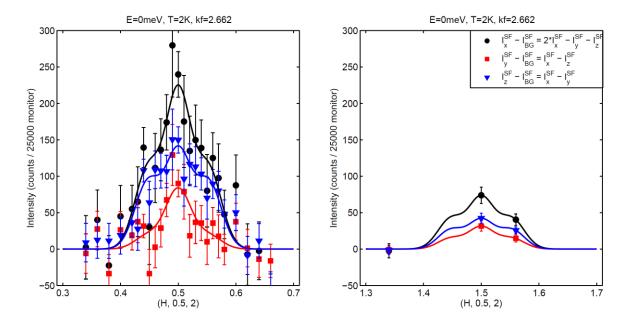
Summary: With this experiment we performed polarized neutron scattering measurements of the incommensurate spin density wave (SDW) order in strongly underdoped YBa₂Cu₃O_{6.4} (superconducting T_c =20K, hole doping p=0.07). Our previous measurements revealed an unusual in-plane structure of the quasi-elastic magnetic response in this sample, with both a commensurate central peak at the antiferromagnetic wave vector $Q_{AF} = (0.5, 0.5, L)$ and incommensurate shoulders in the *H*-direction, which could be resolved for the first time [1]. In order to improve our understanding of the orientation of the magnetic moments, we compared the intensities at (0.5, 0.5, 2) and (1.5, 0.5, 2) in this experiment.

Sample and setup: Our sample was a mosaic of about 80 detwinned YBa₂Cu₃O_{6.4} single crystals on a silicon sample holder (total mass of the crystals: 2.5g). We used IN14 equipped with Helmholtz coils for polarization analysis. The final wave vector was fixed to $k_f=2.662A^{-1}$. No collimation was used to maximize the neutron flux.

Report: The YBa₂Cu₃O_{6.4} sample was aligned in the (*H*, *K*, 4**K*) scattering plane and quasielastic *H*-scans were performed through the antiferromagnetic wave vector $Q_{AF} = (0.5, 0.5, 2)$ and (1.5, 0.5, 2). As our sample is superconducting with $T_c=20$ K, we heated up above T_c when changing the polarization. The spin density wave sets in below the crossover temperature T_{SDW} ~30K and measurements were performed at T=2K.


We measured with neutron polarizations along Q, perpendicular to Q in the scattering plane, and out of the scattering plane (x, y, and z, respectively). It is essential to measure at several values of Q in order to be able to reconstruct the incommensurate spin structure in underdoped $YBa_2Cu_3O_{6+x}$, as one thereby probes different projections of the magnetization to the plane perpendicular to Q. We therefore attempted to compare the intensities at (0.5, 0.5, 2) and (1.5, 0.5, 2).

As shown in Figure 2, the intensity at (1.5, 0.5, 2) amounts to ~33% of the intensity at (0.5, 0.5, 2). This is less than expected from magnetic structure factor measurements and calculations assuming an aspherical Cu(2) form factor performed on the YBa₂Cu₃O_{6+x} parent compound [2]. The YBa₂Cu₃O_{6+x} parent compound has equally populated domains with moments along the two in-plane directions and our results suggest that the moments in YBa₂Cu₃O₆₋₄ are dominantly oriented along the crystallographic *a*-direction. However, it would be important to compare to the intensity at (0.5, 1.5, 2), which should be higher.


Problems during the measurement: As is apparent in Figure 1, we suffered from a high spin-flip background for both (0.5, 0.5, 2) and (1.5, 0.5, 2). In future measurements a PG filter might be helpful. Due to limited time, we sticked to the initial experimental configuration without a PG filter.

References

- [1] T. Loew et al., ILL experimental reports 4-01-1053 and 4-01-1121.
- [2] S. Shamoto et al., PRB 48, 13817 (1993); H. Casalta et al., PRB 50, 9688(R) (1994).

Figure 1 Raw polarized neutron scattering data of the quasi-elastic response of YBa₂Cu₃O_{6.4} (T_c =20K, p=0.07) at T=2K. Left: *H*-scan through (0.5, 0.5, 2). Right: *H*-scan through (1.5, 0.5, 2). Shown is the neutron scattering intensity in the spin-flip (SF) channel for x, y, and z polarizations (see text). A high spin-flip background due to second order contamination is apparent in both panels. Measurements with fixed k_f = 2.662A⁻¹.

Figure 2 Intensity comparison of polarized neutron scattering data shown in Figure 1 after correcting for the background (see legend). Shown is the neutron scattering intensity for (0.5, 0.5, 2) and (1.5, 0.5, 2) at T=2K in the spin-flip (SF) channel for x, y, and z polarizations. The intensity at (1.5, 0.5, 2) amounts to ~33% of the intensity at (0.5, 0.5, 2).